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Abstract: The paper deals with linear quadratic (LQ) optimal problems with free and fixed-end 
point. A unified approach for both problems (with fixed and free end-point) allows establishing of 
analytical formulae for the solution to the same Riccati equation, with different terminal 
conditions. Certain procedures which start from an initial adequate condition are established for 
the problem with free end-point. The necessity of the inverse time computing of the solution to 
Riccati equation is thus avoided. 
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1. INTRODUCTION 

The Riccati matrix differential equation (RMDE) appears 
in two main problems regarding the linear systems: the 
optimal control and the optimal estimation. The RMDEs in 
these cases can differ by the terminal conditions, which can 
be done at the initial moment t0 or at the final moment tf. 
The LQ problem with fixed end-point (P1 problem) leads 
to a RMDE with fixed initial condition. The most known 
LQ problem refers to the free end-point case (P2 problem) 
and it leads to a RMDE with imposed final value. The first 
situation is also met in the optimal estimation problems. 
The paper will deal in the sequel only with the optimal 
control problem in both mentioned variants. Some results 
established for the problem with fixed end-point can be 
adapted for the estimation problems. 

The present paper refers to the well known LQ problem, 
which is treated in very much number of papers or books. 
We mention here for exemplification (Athans & Falb 1966; 
Lee & Markus 1967; Anderson & Moore 1990; Abou-
Kandil et al. 2003) as fundamental books from different 
periods, referring to this problem. We refer especially to 
the Riccati differential equation, which is the key for 
solving of the mentioned problems. There are different 
categories of methods for this aim and we can distinguish 
the following main groups: 
- Direct integration of RMDE. 
- Iterative solving of a simpler first order equation. We 
mention in this direction the use of Lyapunov or Bernoulli 
equation (Kenney & Leipnik 1985), or the Chandrasekhar 
method (extended for time-variant problems by Lainiotis 
(1976)). 
- Analytical, non recursive procedures: the most variants use 
a factorization of the solution obtained from the partitioning 
of a 2nx2n transition matrix. The method was analysed by 
Davison and Maki (1973) for the time-invariant case and it is 
presented by Athans and Falb (1966) for a general case. 
Formulae which use only nxn transition matrices were also 
proposed (Botan 1985; Rusnak 1988; Botan & Ostafi 2010). 
In the same category of non recursive solutions one can be 

mentioned (Incertis 1983; Choi & Laub 1990) and others. 

Certainly, there are different other methods which cannot be 
included in the above categories (for instance, (Sorine & 
Winternitz 1985)). A comparison of some methods is given by 
Kenney and Leipnik (1985). In the last years the researches 
were oriented to the extension of the possibilities of 
solving RMDE, to large scale systems, to the problems 
with difficulties, to different generalized problems and 
also, different procedures were proposed for problem 
solving, like those based on new mathematical 
programming methods (Lee 2005; Barabanov & Ortega 
2004; Hansson 2000; Yao, Zhang & Zhou 2001).  

All above considerations refer especially to P2 problems. 
In (Anderson & Moore, 1990; Abou-Kandil et al. 2003) are 
also presented important aspects referring to P1 problems. 
Some especial aspects referring to Riccati equation in P1 
problems are indicated in (Friedland 1967; Brunovsky 
&Komornik 1981; Botan, Ostafi & Onea 2003). 

The establishing of new basic procedures for RMDE is 
not a closed problem, because the simplification of the 
implementation remains a desideratum. We refer, for 
instance, to the optimal control of the electrical drives, 
where it is necessary to use sampling periods of 
milliseconds. Since the complexity of the algorithms for 
modern drive control method (like vector control) is very 
high, the introducing of the optimal control is possible 
only if the corresponding algorithm is simple.  

The paper presents certain analytical solutions to RMDE for 
the optimal problem with fixed end-point (P1) and with free 
end-point (P2). These methods allow a fast computing and 
ensure a high accuracy. In addition, an analytical formula for 
solution to RMDE allows establishing the initial value for 
this solution in P2 problem and therefore, the problem with 
final condition for RMDE can be transformed in one with 
initial condition. In this case, the real time computing is 
simpler, because the solution at every moment can be 
established from the results obtained at the previous step. In 
this way, the computing in inverse time is avoided.  



 
 

     

 

A similitude between LQ with free and fixed end-point 
problems is put in evidence. In fact, the same Riccati 
equation arises in both cases. The difference consists in 
terminal (initial or final) condition which holds in every case. 

Besides the mentioned theoretical aspects, the proposed 
methods have an advantage in implementation, because 
the computing time is reduced in comparison with other 
procedures. This aspect is important in applications with 
severe time restrictions.  

The next section presents certain common aspects for 
both mentioned problems. The main results of the paper 
referring to the solution to RMDE are developed in the 
sections 3. Simulation results and conclusions end the 
paper. 

2. PROBLEMS FORMULATION AND OPTIMALITY 
CONDITIONS 

The LQ optimal problems refer to a linear system and a 
quadratic criterion. Usually LQ denomination is adopted 
for the problems with free end-point, but the problems 
with fixed end-point can be considered in the same 
category, since they also refer to a linear system and a 
quadratic cost function. Only the problems with finite 
final time will be considered. The paper deals with time 
invariant systems and only some remarks regarding the 
extension to time variant case will be presented. 

A linear time-invariant system is considered: 

 ( ) ( ) ( ), ,n mx t Ax t Bu t x u= + ∈ ∈& R R . (1) 

The general form of the considered criterion is 

0

1 1( ) ( ) ( ) ( ) ( ) ( )
2 2

ftT T T
f f t

J x t Sx t x t Qx t u t Pu t dt⎡ ⎤= + +⎣ ⎦∫  (2) 

(T denotes the transposition). The matrices A, B, 
0, 0, 0S Q P≥ ≥ > are with appropriate dimensions. 

The initial moment 0t  and the initial state 0
0( )x t x=  are 

fixed. The following problems are formulated: 

P1 (with fixed end-point): find the optimal control ( )u t  

which transfer the system (1) from 0x  in the final state 
( ) 0f

fx t x= =  ( ft  is fixed) so that to be minimized the 
performance index (2), with 0S = . 

P2 (with free end-point): find the optimal control ( )u t  

which transfer the system (1) from 0x  in a free point ( ft  is 
fixed) so that to be minimized the performance index (2). 

The problems P1 and P2 will be studied using a common 
procedure, and the attention will be focused on RMDE 
which appears in both cases. There are frequently used 
procedures for P1 problems that do not involve Riccati 
equation. Unlike these techniques, one will indicate that it 
is useful to use this equation in such problems and there is 
a similitude with P2 problems.  

The necessary optimality condition (Athans & Falb 1966; 
Anderson & Moore 1990) leads to 

 1( ) ( ) ( ) ( )u t P t B t t−= − λ , (3) 

where ( ) ntλ ∈ R  is the co-state vector. 

If it is desired to obtain a feedback optimal control, the 
co-state vector ( )tλ  from (4) is expressed as a function of 
the state vector 

 ( ) ( ) ( ), ( ) n nt R t x t R t ×λ = ∈% % R  (4) 

and than the optimal control becomes 

 1( ) ( ) ( )Tu t P B R t x t−= − % . (5) 

The matrix ( )R t%  in (4) and (5) is positive defined and 
satisfies the well known Riccati matrix differential 
equation (RMDE) (Athans & Falb 1966) 

 1( ) ( ) ( ) ( ) ( ) ,T TR t R t NR t A R t AR t Q N BP B−= − − − =&% % % % % . (6) 

The state and co-state variables satisfy the Hamilton 
canonical equations; taking into account (3), these 
equations can be written in the form 

 ( ) ( )t G tγ = γ& , (7) 

where 

 2 2 2( )
( ) ,

( )
n n n

T

A Nx t
t G

t Q A
×−⎡ ⎤⎡ ⎤

γ = ∈ = ∈⎢ ⎥⎢ ⎥λ − −⎢ ⎥⎣ ⎦ ⎣ ⎦
R R . (8) 

If one denotes the transition matrix for G as  

11 12 2 2

21 22

( , ) ( , )
( , ) , ( , ) , , 1,2,

( , ) ( , )
n n n n

i j
t t

t t i j
t t

× ×Γ θ Γ θ⎡ ⎤
Γ θ = ∈ Γ θ ∈ =⎢ ⎥Γ θ Γ θ⎣ ⎦

R R  (9) 

the solution to the system (7) is 

 ( ) ( , ) ( )t tγ = Γ θ γ θ . (10) 

Depending on the terminal conditions of the problem, one 
will adopt 0tθ =  or ftθ = . 
Remark 1: All presented equations are valid for both P1 
and P2 problems, since no reference to terminal 
conditions were used. 

Remark 2: There are procedures for P1 problem based on 
the direct using of the solution (10) to the equation (7), 
but this solution has a complicated form, especially for 
feedback control. For the P2 problem, the equations (5) 
and (6) are always used. 

The same RMDE appears in both problems, the difference 
consisting in the terminal conditions for this equation. A 
supplementary difficulty appears in the P2 problem case 
since RMDE must be solved in inverse time, starting from  

 ( )fR t S=% . (11) 

This implies to beforehand compute and memorize the 
solution to RMDE at every sampling moment, or to take 
again the inverse time computing at every sampling period. 
According to these procedures, it is not possible to establish 
a direct time iterative method for RMDE solving. 



 
 

     

 

The present paper establishes similar analytical formulae 
for RMDE solution in P1 and P2 problems. Moreover, one 
can find the initial value 0( )R t%  in the P2 problem and this 
fact allows establishing of an analytical formula which 
starts from the initial moment 0t , or allows the introducing 
of a direct time numerical iterative techniques. 

The Theorem 1 presented in the next section establishes an 
analytical formula for the solution to RMDE starting from 
any positive defined initial matrix 0( )R t% . This initial 
matrix can be computed with the formulae indicated in the 
Theorem 2 and 3 for P1 and P2 problems, respectively. 
Finally, the Theorem 4 presents a solution to RMDE in P2 
problems which does not explicitly uses 0( )R t% .  

3. SOLUTION TO RMDE 

3.1. Transformation of the canonical equations 

The solution (10) to the system (7) is not adequate for 
analytical developments, since the matrix blocks 

, i,j=1,2 ijΓ , of the transition matrix Γ can not be 
analytical computed. In order to overcome this difficulty, 
a change of variables is performed, so that a convenient 
form for the system matrix is obtained. For this purpose, 
the co-state variable ( )tλ is expressed in the form 

 ( ) ( ) ( )t Rx t v tλ = +  (12) 

instead of (4). In the above relation, R and v(t) are 
unknown constant matrix and variable vector, 
respectively. One can now introduce the vector 

 2( ) [ ( ) ( ) ]T T T nt x t v tρ = ∈ R . (13) 

The system for new variables becomes 

 ( ) ( )t H tρ = ρ& , (14) 
with 

2 2

21

n n
T

F N
H

H F
×−⎡ ⎤

= ∈⎢ ⎥
−⎢ ⎥⎣ ⎦

R ,  with   F A NR= −  (15) 

It is easy to verify that the matrix block 21H  is zero if the 
matrix R satisfies the equation  

 0T TRNR R A A R Q− − − =  (16) 

and therefore 

 
0 T

F N
H

F

−⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
. (17) 

Evidently, (16) is the Riccati matrix algebraic equation, 
which appears in the similar optimal control problem with 
infinite final time (Athans & Falb 1966).  

The solution to the equation (14) is  

 2 2( ) ( , ) ( ), ( , ) n nt t t ×ρ = Ω θ ρ θ Ω θ ∈ R , (18) 

where ( , )tΩ θ  is the transition matrix for H. Taking into 
account the form (17) for H and the relationships 

( , ) ( , )t G tΩ θ = Ω θ&  and 2( , ) nIΩ θ θ = , one can prove that  

 12( , ) ( , )
( , )

0 ( , )
t t

t
t

Ψ θ Ω θ⎡ ⎤
Ω θ = ⎢ ⎥Φ θ⎣ ⎦

, (19) 

where (.)Ψ  and (.)Φ  are the transition matrices for F 

and  TF− , respectively and 12 (.)Ω  satisfies the equation 

 12 12 12( , ) ( , ) ( , ), ( , ) 0t F t N tΩ θ = Ω θ − Φ θ Ω θ θ =&  (20) 

and it is 

 12 ( , ) ( , ) ( , )
t

t t N d
θ

Ω θ = Ψ τ Φ τ θ τ∫ . (21) 

In this way, the solution to the system (17) can be established 
using only n x n transition matrices. This is an advantage in 
comparison with the well known procedures based on the 
factorization of the solution to the RMDE and derived from 
Radon’s Lemma (Lainiotis 1976) which use 2nx2n transition 
matrices. The advantage results from the particular form (17) 
of the matrix H of the new system (14). The matrix blocks of 
the matrix ( , )tΩ θ  can be computed significantly easier than 
ones of the matrix ( , )tΓ θ . In addition, the matrix blocks of 
the initial transition matrix ( , )tΓ θ  can be expressed in terms 
of ( , )tΩ θ ; from above transformations, one can prove that 

11 12 12 12

12 12 22 12

( ) ( ) ( ) , ( ) ( )

( ) ( ) ( ) ( ) , ( ) ( ) ( )

R

R R R R R

Γ ⋅ = Ψ ⋅ −Ω ⋅ Γ ⋅ = Ω ⋅

Γ ⋅ = Ψ ⋅ − Ω ⋅ −Φ ⋅ Γ ⋅ = Ω ⋅ +Φ ⋅
 (22) 

3.2 Solutions to RMDE in P1 and P2 problems  

We are now in position to formulate a general theorem for 
the solution to RMDE starting from a certain initialization 

0( )R t% . The result can be used for P1 and P2 problems 
adopting adequate transformations.  

Theorem 1: The solution to RMDE (6) with initial 
condition 0( )R t% is 

 1
0 0 0( ) ( , )( ( ) ) ( , )R t R t t R t R M t t−= + Φ −% % , (23) 

where 
 0 0 12 0 0( , ) ( , ) ( , )[ ( ) ]M t t t t t t R t R= Ψ + Ω −% . (24) 

Proof: The initial co-state vector 0
0( )tλ = λ can be 

expressed from (4) and (12), written for 0t t= : 

 0 0 0
0 0( ) , ( )R t x x x tλ = =% , (25) 

or           0 0 0 0
0, ( )v Rx x x tλ = + =   (26) 

and thus  0 0
0[ ( ) ]v R t R x= −% .  (27) 

Thus, it results from the first equation in (18), written for 0tθ = , 

 0
0( ) ( , )x t M t t x= , (28) 

with 0( , )M t t given by (24). 
The solution given by the second equation (18) is 

 0
0( ) ( , )v t t t v= Φ  (29) 



 
 

     

 

and replacing (27), it results 

 0
0 0( ) ( , )( ( ) )v t t t R t R x= Φ −% . (30) 

Therefore, the co-state vector can be expressed from (12): 

 0
0 0( ) ( ) ( , )( ( ) )t Rx t t t R t R xλ = + Φ −% . (31) 

From (4), (28) and (31), yields (23) ■   

The next two theorems establish the initial matrix 0( )R t%  
in P1 and P2 problems. 

Theorem 2: The initial matrix 0( )R t% for RMDE (6) in P1 
problem is 

 1
0 12 0 0( ) ( , ) ( , )f fR t R t t t t−= + Ω Ψ% . (32) 

Proof: The first equation (10) for ft t=  and 0tθ =  is 

 0 1 0
0 12 0 11 0( ) ( , ) ( , )f ft t t t t x−λ = λ = −Γ Γ . (33) 

Since ( ) 0fx t =  in P1 problem, it results 

 0 1 0
0 12 0 11 0( ) ( , ) ( , )f ft t t t t x−λ = λ = −Γ Γ . (34) 

One can prove (Botan, Ostafi & Onea 2003) that 
12 0( , )ft tΓ  is non-singular if (A,B) is completely 

controllable. Comparing (34) with (4) for 0t t= , yields 

 1
0 12 0 11 0( ) ( , ) ( , )f fR t t t t t−= −Γ Γ% . (35) 

Replacing the matrices from (22) in (35), it results (23) ■  

Theorem 3: The initial matrix 0( )R t%  for RMDE (6) in P2 
problem is 

 1
0 0 2 0( ) ( , )( ) ( , )f fR t R t t S R M t t−= + Φ −% . (36) 

Proof: The equation (18) written for ftθ =  is 

 12( ) ( , ) ( ) ( , ) ( )f f f fx t t t x t t t v t= Ψ + Ω . (37) 

One can express ( )fv t  from the final condition (11) and 

from (12) written for ft t= : 

 ( ) ( ) ( )f fv t S R x t= − . (38) 

From (37) and (38), one obtains 

 2( ) ( , ) ( )f fx t M t t x t= , (39) 

 2 12( , ) ( , ) ( , )( )f f fM t t t t t t S R= Ψ + Ω − . (40) 

The vector v(t) can be expressed in terms of x(tf) from the 
second equation (18) and from (38): 

 ( ) ( , ) ( ) ( , )( ) ( ) ( )f f f fv t t t v t t t S R v t x t= Φ = Φ −  (41) 

and then it is related to x(t) using (39). Now, (12) can be 
written as 

 1
2( ) ( , )( ) ( , ) ( )f ft R t t S R M t t x t−⎡ ⎤λ = + Φ −⎣ ⎦ . (42) 

The matrix 2 ( , )fM t t  is non-singular since it express the 

transition between ( )fx t  and ( )x t . Comparing equation 
(42) with (4), one obtains  

 1
2( ) ( , )( ) ( , )f fR t R t t S R M t t−= + Φ −% . (43) 

Relation (36) results immediately from (43) for 0t t=  ■ 

Remark 3: Relation (43) represents an analytical formula 
for the solution to RMDE for P2 problem. This formula is 
also indicated by Botan and Ostafi (2010). A solution in a 
closely form with (43) is proved by Rusnak (1988) by 
straightforward computing. The formula implies only nxn 
transition matrices and this fact is an advantage in 
comparison with other similar analytical methods which 
imply the computing of 2nx2n transition matrices. As in 
other methods, ft  is reference moment, but anyway, the 
use of the formula (43) has significant advantages from 
the simplification and the precision point of view. 

Remark 4: The results of the Theorem 1, combined with 
Theorem 2 or 3 allow the analytical computation in direct 
time of the solution to RMDE for the P1 and P2 
problems, respectively. The formula (23) from the first 
theorem can be used as such, but it is possible to 
introduce in addition certain iterative computing. For 
instance, the transition matrices can be computed with 

 1 1 0 0( , ) ,i i it t I+ + δΨ = Ψ = Ψ ⋅ Ψ Ψ =  
 1 1 0 0( , ) ,i i it t I+ + δΦ = Φ = Φ ⋅Φ Φ = ,  

where 1( , )i it tδ +Ψ = Ψ  and similar for δΦ . The iterative 
computing can be also performed for the matrix 12 (.)Ω  
starting from (20): 

 ( )12 1 0 12 0 0( , ) ( , ) ( , )i i it t I F t t N t t+Ω = − δ Ω − δ Φ , 

with 1i it t+δ = −  and 12 0 0( , ) 0t tΩ = .  

Remark 5: Different numerical iterative (in direct time) 
procedures can be used for both problems, starting from the 
known initial matrix 0( )R t% . For instance, a simple way is 
to approximate the derivative in (6) and then one obtain  

 1

1

( );
.,

T
i i i i i i

i i

R R R NR R A A R Q
t t const

+

+

= + δ − − −
δ = − =
% % % % % %

 (44) 

where ( )i iR R t=% %  and the initialization is 0 0( )R R t=% % , 
specific for each problem. One has to remark that some 
procedures of this type (for instance, (44)) impose a great 
number of steps for an adequate accuracy.  

The Theorems 1 and 3 offer the solution to P2 problem 
explicitly computing the initial matrix 0( )R t% . The next 
theorem indicates an analytical formula for the solution to 
RMDE for P2 problem which does not involve 0( )R t% . 

Theorem 4: The solution to RMDE (6) with final 
condition (11) is  



 
 

     

 

 1
0 0( ) ( , ) ( , )R t R t t WM t t−= + Φ% , (45) 

with 0( , )M t t , 2 ( , )fM t t given by (24) and (40) and 

 1
0 2 0( , )( ) ( , )f fW t t S R M t t−= Φ − . (46) 

Proof: the result is obtained immediately form Theorems 
1 and 3. With the adopted notation, (36) can be written 

 0( )R t R W− =% . (47) 

If this relation is replaced in (23), yields (45). ■ 

Remark 6: The formulae given by the above theorems are 
similar to some extent using only nxn transition matrix. 
They are solution to the same RMDE, but for different 
terminal conditions. The formulated problems have unique 
solutions (supplementary controllability condition is 
necessary for P1 problems). For this reason, all different 
methods have to lead to the same result.  

Remark 7: Similar results can be obtained for other 
problem types, for example, for discrete time LQ problems. 
The established formulae can also be extended to the time 
variant case. For instance, instead of (43) from Theorem 
2, the solution to RMDE is 

 1
2( ) ( ) ( , )( ) ( , )f fR t R t t t S S M t t−= + Φ −% , (48) 

where ( )R t  is a particular solution of RMDE with final 

condition ( )fR t S= . It should be noted that the 
advantages for the time–variant case can be achieved if 
the finding of a particular solution is not difficult. 

Remark 8: Since ( )R t%  has two components (see, for 
instance (43) or (45)), the optimal control will also 
contain two components, which can be expressed from (3) 
and (12) in the form 

 ( ) ( ) ( )f cu t u t u t= + , (49) 

where  

 1( ) ( )T
fu t P B Rx t−= −  

is a feedback component (identical with the control vector 
in the similar LQ problem with infinite final time) and 

 1 1
0 0( ) ( ) ( , ) ( )T T

cu t P B v t P B t t v t− −= − = − Φ  

is a corrective component. 

The difference between the P1 and P2 problems consists 
in the initialization 0( )v t . The procedures of this type will 
be named in the sequel as first procedure for optimal 
controller implementation (FP). Similarly, the procedures 
based on (5) and above established solutions for RMDE 
will be named as second procedures (SP). 

4. EXAMPLES 

A first category of examples refers to the computing of the 
solution to RMDE for P2 problem. Different examples of 
systems (from second to ten order) were considered and in 

each case were used three computing methods: two 
methods are based on the analytical formulae (43) and 
(45) from the above theorems; the third one uses a 
numerical iterative technique, starting from the initial 
value (for instance, based on (44)). A first comparison 
refers to the precision of the results. The indices  

2 1 2 1( ) ( ) / ( )R t R t R tρ = −% % %  and 3 1 3 1( ) ( ) / ( )R t R t R tρ = −% % %  

were introduced for this purpose. In these ratios, 

1 2 3( ), ( ), ( )R t R t R t% % %  denote the solutions to RMDE 
obtained with the above mentioned methods (equations 
(43), (45) and (44), respectively). The maximal values for 

2ρ  and 3ρ  for all exemplified cases and for all t were 
136 10−⋅  and 33 10−⋅ , respectively. This fact indicates a 

very high precision for analytical methods and an 
acceptable precision for the adopted numerical method. 
The value of 3ρ  depends on the increment δ. For instance, 

one obtained 2
3 3.2 10−ρ = ⋅  for /10Tδ =  (T is the 

sampling period) and 2
3 0.63 10−ρ = ⋅  for / 50Tδ = in a 

second order system case. 

Besides precision, the computing time was analyzed. For 
this aim, adequate MATLAB functions (TIC and TOC) 
were used in order to appreciate the total computing time of 
the optimal control on the interval 0[ , ]ft t . Close values 
were obtained for the two analytical methods (based on 
(43) and (45)) and a value three times greater for the 
numerical procedure (based on (44)) for / 50Tδ = . By 
comparison, this last case offers a value twelve times better 
as the classical procedure, based on the same iterative 
formula (44), but used in inverse time, starting from ( )fR t% . 

In conclusion, the proposed analytical methods offer 
advantages relating to the precision and computing time 
in comparison with classical iterative procedures. An 
intermediate behaviour from the computing time point of 
view appears to the numerical iterative procedures based 
on analytical formulae.  

A second category of examples and simulation refers to 
the behaviour of the optimal control for both P1 and P2 
problems. The Fig. 1 and Fig. 2 present the variation of 
the optimal control and state variables for the P1 and P2 
problems, respectively.  

The simulations were performed for the system (1) and 
the criterion (2) with the matrices: 

0.04 20
3.5 19

A
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
,

0
6

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,
1 0
0 0

S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,
1 0
0 3

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1P = . 

In both figure, the results based on two methods are 
presented: FP (line curves) and SP (x-mark curve) – see 
Remark 8. The explanation of the very good coincidence 
is the fact that the both methods are in essence analytical 
and only small numerical computing errors occur. One 
can remark that the components of the corrective vector 
v(t) have about similar variations, but they start from 
other initial values in the two cases. 
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Fig. 1. Behaviour of the optimal system – fixed end-point 
case (for FP and SP) 

0 0.05 0.1 0.15 0.2 0.25 0.3
-10

-5

0

5

10

15

time[s]

x2

x1

u

20*v1

20*v2

 
Fig. 2. Behaviour of the optimal system – free end-point 
case (for FP and SP) 

5. CONCLUSIONS 

- Certain new solutions to Riccati differential equations in 
the LQ problems are proposed. 
- A unified procedure for the problems with free and fixed 
end-point is approached. 
- A Riccati equation with adequate initial condition and 
the corresponding analytical solution are established for 
LQ problems with fixed end point. 
- Two analytical solutions to Riccati equation for the LQ 
problem with free end-point are proposed. One of them 
starts from an initial condition, avoiding the inverse time 
computing. A recurrent numerical method for direct time 
computing of the solution to Riccati equation is also 
indicated. 
- All the proposed methods ensure a high precision, a 
significant decrease of the computing time and an easier 
implementation in comparison with the existing 
procedures. 
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