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Abstract: Computational steering aims both to interfere with an otherwise autonomous 
computational process, to change its outcome, and to enable the discovery of new features of the 
computational processes through integrated experiments. Traditionally, computational steering has 
been applied to large, compute-intensive and non-interactive simulations, where it more 
specifically refers to the practice of guiding a simulation experiment into some region of interest. 
In this paper, we review the motivations for computational steering and introduce an evolutionary 
design for a framework that takes into consideration two of its main important aspects, program 
steering and data steering, together with an approach for static scheduling based on a genetic 
algorithm. We then outline the capabilities of the framework by simulating the execution for three 
categories of applications, with low, medium and high communication needs, under two running 
scenarios – with and without tasks migration (required remote data will always be transferred).  
The results showed that program steering could bring more benefits in the given setting than data 
steering, and that there is a reasonable loss of efficiency between 16 and 64 processors, which 
could be explained correlated to the loss in data transfers gain.  
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1. INTRODUCTION 

Modeling and simulation have become key phases for a 
wide spectrum of applications in modern research in all 
computer science areas. Cluster and grid simulation 
applications that employ parallel computing techniques 
(i.e. MPI, OPENMP) to simulate real processes are just a 
common example (Watanabe, 2011). Modeling, as a 
general term, denotes a process that offers an abstract 
representation of a system, which allows, in turn, through 
its study, the formulation of valid conclusions on the real 
system. When the study involves experiments on the 
model (or, to be more specific, numerical evaluation of 
the model behavior, using the computer, under various 
hypotheses and working scenarios), we call that 
(numerical) computer simulation.  

Traditionally, computer simulations are computationally 
intensive, non-interactive and slow – if they aim towards 
the obtaining of meaningful results with a high degree of 
confidence (result accuracy is conditioned by the 
granularity of the model, which should be adjusted up to a 
useful “scale”, sometimes in iterative steps). The 
traditional steps in simulation are to construct a model, 
prepare input, execute a simulation, and then visualize the 
results. A text file describing the initial conditions and 
parameters for the course of a simulation is prepared, and 
then the simulation is submitted to a batch queue, to wait 
until there are enough resources available to run the 
simulation. The simulation runs entirely according to the 
prepared input file, and outputs the results to disk for the 

user to examine later. However, more insight and a higher 
productivity can be achieved if intermediary inspections 
of executions are allowed, and the model could be 
adjusted accordingly. This is the underlying idea of 
computational steering: researchers change parameters of 
their simulations on-the-fly and may receive feedback on 
the effect. In this way simulations may be executed in an 
interactive manner. This could be a simple matter, as 
allowing the user to monitor the values of some 
parameters in their simulation and, if necessary, to edit 
the values of others, or a more complex issue, that would 
require the integration of efficient infrastructures and 
good computational techniques. Anyway, a supplemental 
and useful benefit will be in that the researcher running a 
steerable simulation obtains an intuitive understanding of 
its behavior, i.e. the correlation between the modifications 
and the reactions of the process. 

Computational steering can be viewed simply as a process 
of manual intervention on an autonomous computational 
system, with the goal to analyze and modify outputs, in 
order to increase its efficiency. But apart from its pure 
applicative perspective, computational steering can be 
examined from a broader technical perspective; for 
instance, we may consider the modification of memory 
amount available for a process, with the goal to observe 
and influence the effects over the execution time. This 
paper deals with the concept especially in the latter, 
broader sense. The taxonomy of the concept also 
includes: program steering, which has been defined as the 
capability to control the execution of resource-intensive, 
long running programs (this may imply modifications of 



     

program state, starting and stalling program execution, 
etc.), data steering (which implies the management of 
data output, alteration of resource allocations etc.), and 
dynamic steering (which requires the user to monitor 
program or system state and have the ability to make 
changes, through “add-ons” routine calls or data 
structures interaction in the code). The development of 
distributed simulation and steering frameworks, able to 
support run-time adjustments and live visualization, has 
not been an easy task. Extensive surveys of research in 
this area were carried out in over the last two decades (Gu 
et al, 1994; Allan and Ashworth, 2001); however not 
many of the projects led to practical tools.  

The rest of the paper is organized as follows. Section 2 
describes background and related work in the domain, 
that is, similar systems and useful ideas. The next section 
reviews the initial design and a few implementation 
details for the State Machines Based Distributed 
(Sub)System (Poteras and Mocanu, 2011). Section 4 
describes the evolutionary design aimed to accommodate 
the conceptual model for a Distributed Chunks Flow 
Management (Sub)System (Mocanu and Poteras, 2011). 
Section 5 explains how the two subsystems work together 
and presents integrative experimental results based on a 
genetic algorithm for static scheduling. The last section 
concludes the paper and presents some future work ideas. 

2. BACKGROUND 

Some of the most relevant frameworks for distributed 
simulation and computational steering, for the scope of 
this paper, may be considered: COVS, RealityGrid, 
CUMULVS and CSE. COVS, or Collaborative Onlline 
Visualization and Communication (Riedel et al, 2008) is a 
framework that encapsulates common visualization 
frameworks (VTK, AVS/Express), steering technologies 
(VISIT, gViz, ICENI) as well as communication libraries 
(VISIT, PV3) that carry out the data transportation and 
steering commands. This multi-framework integration 
allows COVS to run simulations independently from 
visualization and communication tasks. The RealityGrid 
(Jha et al, 2004; Brooke et al, 2003) is an API library 
consisting mainly from two modules. The former is 
responsible for offering steering capabilities and the latter 
provides tools for dedicated client applications. 
RealityGrid uses check-pointing techniques for 
supporting steering commands. CUMULVS, or 
Collaborative User Migration User Library for 
Visualization and Steering, has been developed at Oak 
Ridge National Laboratory and has been designed for the 
development of collaborative on-line and interactive 
simulation and visualization. The power of this platform 
consists in the advanced recovery techniques, the tasks 
migration support and check-pointing. CSE, or 
Computational Steering Environment (van Wijk, 1997; 
van Liere, 1997) has been developed at the Center for 
Mathematics and Computer Science, in Amsterdam. It 
uses a centralized architecture around a replicated Data 
Manager that is able to carry out steering commands and 
coordinate the simulation tasks.  

The Data Manager from CSE leads us to an important 
problem in the analysis of these efforts: data availability. 
The computations may be dramatically slowed down by 
the acquiring of data. Dataflow processing is at the same 
time the most appropriate model of programming and a 
crucial factor for achieving the desired performance. 
Existing systems like BitTorrent and Apache Hadoop 
Distributed File System implement a parallel dataflow 
style of programming which provide the data required by 
a distributed application’s processes in the most efficient 
way. The BitTorrent Protocol (Cohen, 2008) establishes 
peer-to-peer data transfer connections between a group of 
hosts, allowing them to download and upload data inside 
the group simultaneously. The torrents systems that 
implement BitTorrent protocol use a central tracker that is 
able to provide information about peers holding the data 
of interest. Once this data reaches the client application, it 
tries to connect to all peers and retrieve the data of 
interest. However, it is up to the client to establish the 
upload and download priorities. Torrents are mainly 
systems that transfer files in distributed environments in 
raw format without any logical partitioning of the data, 
and they might be a good choice for distributed 
environments, especially for those based on slower 
networks. However, the main drawbacks of torrent 
systems are related to the centralized nature of the torrents 
tracker as well as leaving the entire transfer algorithms 
and priorities up to the client application which might 
cause important delays if the transfers trading algorithm 
chooses to serve a peer that might have a lower priority at 
the application level. The centralized nature of the tracker 
concentrates the reliability around the tracker; if the 
tracker goes down, the entire system becomes not 
functional.  

Rather than relying on hardware to deliver the highest 
availability, the Hadoop Distributed File System was 
designed to detect and handle failures at the application 
layer, by this delivering a highly-available service on top 
of a cluster of computers, each of which may be prone to 
failures. Hadoop is a software library conceived as part of 
the Apache Hadoop (http://hadoop.apache.org/) 
distributed systems framework. It has been built upon the 
Google’s Map-Reduce architecture as well as HDFS file 
system, which proved to be scalable and portable. It uses 
a TCP/IP layer for internal communication and RPC for 
client requests. The HDFS has been designed to handle 
very large files that are sent across hosts in chunks. Data 
nodes can cooperate with each other in order to provide 
data balancing and replication. The file system depends 
closely on a central node, the name node whose main task 
is to manage information related to directory namespace. 
HDFS offers a very important feature for computational 
load balancing, namely it can provide data location 
information allowing the application to migrate the 
processing tasks towards data, than transferring data 
towards processing task over the network (Allan and 
Ashworth, 2001). The main drawback of HDFS seems to 
be, again, the centralized architecture built around the 
name node. Failure of the name node implies failure of 
the entire system.  



     

Due to the diversity and complexity of distributed models, 
choosing the appropriate design for a system like ours is 
not an easy task. Besides of the usual requirements 
imposed to a distributed system, like scalability, 
flexibility, extensibility, portability, we looked for support 
for load balancing and tasks migration, and safety 
features. For this we concluded to a form of design known 
as evolutionary design. Essentially, evolutionary design is 
a way to construct a system in which the design grows as 
the system is implemented. In other words, design is part 
of the programming processes and the design changes as 
the program evolves.  

The overall objective of our design is to merge together 
parallel mapping of tasks in the form of state machines, 
able to be deployed in a robust way over a network, and 
parallel dataflow handling, separated into a standalone 
module whose main role is to acquire, store and provide 
the data required by the application’s processes in the 
most efficient way. We will describe in this paper several 
iterations of the actual design of the framework that 
consider both main and important aspects, program 
steering and data steering, together with an approach for 
static scheduling based on a genetic algorithm. Besides 
the overall testing of the resulting system, we’ll prove the 
capabilities of the framework by simulating and 
optimizing the execution for several categories of 
applications, with low, medium and high communication 
needs, under different running scenarios – with and 
without tasks migration, but with appropriate transfer of 
the required remote data.   

Thus, the term evolutionary design gets another 
connotation which is also within the scope of this paper. 
Evolutionary design, applied to algorithmic development, 
incorporates a computational model of evolution and 
natural selection that has been successfully applied to 
many complex optimization problems with nonlinear, 
temporal or stochastic components, where traditional 
optimization techniques proved to be inadequate. 

3. FRAMEWORK INITIAL DESIGN AND 
IMPLEMENTATION 

The enabling practices of continuous integration, testing, 
and refactoring, provide a new environment for the 
evolutionary design. In order to make this work, one 
should define clearly not only the goals, but also the 
restrictions of the future system. Many domains impose 
strict requirements for software in execution, calling for 
very high safety standards as well as high performance 
environments, being simply incompatible with errors and 
instability; there may dramatic effects associated, for 
instance, with an error in a software application that 
assists a surgery. To improve the reliability and safety, 
one has to make sure that in any moment the software is 
in a consistent state; this might need the analysis of all 
possible states prior to the system development, making 
sure the system’s reaction is appropriate in any state. A 
good practice would be to analyze all possible states prior 
to the system development and by ensuring the system’s 
reaction is appropriate in any state. All these constraints 

lead us to the idea of representing tasks as finite state 
machines. State machines can provide code safety, 
robustness, traceability, excludes erroneous states and 
inconsistencies while providing a simple and well 
structured “package” for representing complex tasks. 
Being represented as “packages”, tasks are encapsulated 
and can easily migrate in distributed environments.  

 
Fig. 1. The structure of the proposed distributed system. 

Tasks migration together with live monitoring of the 
distributed environment reveals new possibilities for 
defining dynamic load balancing algorithms. We aimed 
initially to a new design model for a distributed 
simulation framework (environment) whose architecture 
is illustrated in Fig. 1. The model has been implemented 
as a class library that reduces considerably the 
applications development time. Our model consists of five 
main modules: Simulation Module, Control and 
Communication Module, Visualization Module, Shared 
Memory Module and Client Application. The processing 
is being performed by the simulation processes. They are 
represented as state machines, and there can be run as 
many processes as each host can handle efficiently. The 
shared memory module can comply either to a distributed 
form or a centralized one. Its main goal is to store the 
system’s parameters which usually realize the 
computational steering. The control and communication 
module handles data flow as well as monitoring and 
migration jobs. It is responsible for acquiring input data, 
forwarding output data to the visualization filters, 
synchronizing access to the shared memory while 
monitoring the system’s resources and loads and realizing 
machines’ migration whenever necessary. The control and 
communication module is able to rise the computational 
steering to a new level by allowing the user to manually 
specify simulation processes migration.  There will be 
only one instance of the control and communication 
module on each host. The visualization module is 
responsible for translating simulation’s output which 
usually is in a raw format into a more appropriate format 
for visualization. The client application initializes, 
monitors, controls (steers) and analyzes the simulation. 

The architecture is based on the theoretical model of a 
state machine, which is a quintuple  



     

where  is the set of input parameters (input alphabet, 
finite, non empty), S is the set of states,  is the initial 
state,  is the states transition function  and F 
is the set of final states. The architecture ensures the 
separation between machine code and machine data 

The library consists of a set of abstract classes and 
interfaces that allow the developer to define the machine’s 
algorithm by extending/implementing the proper methods. 
The library’s engine automatically manages the state 
machines and their migration. The main class of the 
platform is the StateMachine class. It is an abstract class 
which serves as base class for every type of state machine 
required by the application (StateMachineX, 
StateMachineY). It handles the states succession and 
computations by employing the performComputation 
method together with the states transition table. The 
performComputation method will be overridden by the 
derived types and it will hold all custom algorithms 
specific to each state. The StateMachine class starts 
computations by invoking the method passing as 
parameters the initial state, performs computations 
associated with this state and retrieves the output. 

The states transition table is being checked for the next 
state and the process continues in the same manner. Data 
is being separated from code by using StateMachineData 
objects. StateMachineData holds all relevant information 
about the machine: parameters, current state, transition 
table, machine identifier – unique in the entire 
environment, the machine type (StateMachineX, 
StateMachineY), final states, etc. All these can be 
extended by deriving the StateMachineData class. The 
transition table (TransitionTable) its represented as a 
mapping between pairs <parameters, state> and future 
state. The transition is performed by method getNextState 
which retrieves the next state based on the current state 

and the output values of the parameters from the current 
state. For flexibility reasons the parameters have been 
interfaced by the IParameter interface leaving its 
implementation up to the developer. IParameter offers 
getter and setter methods as well as parameters matching 
methods. The state machines’ management is ensured by 
the “brain” class, which is StateMachinesManager. Its 
role is to manage all the machines running on a host. It is 
able to monitor the system, to ensure data availability, to 
create, run and migrate machines to and from other hosts. 
The most important tasks performed by the 
StateMachinesManager are related to tasks migration and 
load balancing. These tasks are performed by the 
following methods: packMachine() – prepares the 
machine for migration, unpackMachine() – prepares 
machine for resuming the processing on the new host, 
mpiSendMachine() – sends the machine to other host, and 
mpiReceiveMachine() – receives the machine from 
another host, and RunMachine() – which resumes the 
processing. Each host in the distributed environment will 
run one instance of the state machines manager. 
Considering the above implementation details we can 
enumerate the steps needed for implementing distributed 
simulation applications on top of the framework. 

• Define system parameters (implementing IParameter) 
• Define all types of machines needed. For each type, a 

new derived class will be created inheriting the class 
StateMachines. The method performComputation will 
hold the processing algorithms. 

• Instantiate the TransitionTable class and populate it 
with mappings of type <<parameter, current state>, 
future state> 

The StateMachinesManager will be instantiated and run 
on each host. Fig. 2 illustrates the design and also the 
workflow within the system.  

 
Fig. 2. The library’s initial architecture and workflow 



     

4. DESIGN EVOLUTION: DISTRIBUTED 
CHUNKS FLOW MANAGEMENT SYSTEM - 
THE CONCEPTUAL MODEL 

As we usually consider it, a design is a mapping process 
from the design requirements to a design result. When the 
design requirements are modeled in a functional space, 
design results may be found either in an attribute space or, 
more closely to the evolutionary approach, in a parameter 
space that evolves together with the model. The 
completion of the model for data to describe design 
requirements and the design results developed at different 
design stages, from conceptual design to detailed design, 
is corresponding to the design descriptions at different 
design stages. 
For the proposed data flow management system, whose 
model is illustrated in Figure 3, we started from a series of 
“autonomous” features and then we looked for the 
integration requirements, with the framework described in 
the previous section. The main features depicted in the 
initial stages of design were:  

- cost:  better price/ performance ratio can be obtained 
as long as commodity hardware is used for the 
component computers; 

- predictability: the system must provide the desired 
responsiveness in a timely manner; 

-  portability: cross-platform system design that does 
not require special system privileges for running): 

- extensibility: new data partitioning modules can be 
integrated at runtime);  

- scalability: hosts can be added at run-time; storage 
capacity, the size of the network or the overall load 
on the system can be increased, and this should not 
have a significant effect;  

- run-time data consistency (synchronization): this is 
the ability of the system to coordinate actions of 
multiple components (this underlies the ability of a 
distributed system to act like a non-distributed one);  

- abstract communication API;  
- customizable data handling for all data types, etc. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The data flow management system design model 

The data flow management system is intended to separate 
data flow management from the processing level the 
framework provides, while maintaining high data 
availability and, possibly, fault tolerance, which is in our 
understanding the capacity to recover from component 
failures without performing incorrect actions. The entire 
model has been built around one key element, the data 
chunk. It usually represents a file partition but it can also 
be any data object required by the application’s processes.  
Besides the data piece itself, a data chunk also contains 
meta-information describing the data piece, like: size, 
location inside source file, the data type, timestamp of 
latest update or the class that handles chunks of its type. 
Thus, the most important contribution of the data flow 
management system is the way it handles chunks of 
different types in an abstract mode without actually 
knowing what is inside the chunk, leaving the data 
partitioning up to the application level. This is very 
important from an application perspective, allowing it to 
map data chunks to processing tasks very efficiently. No 
restrictions are imposed by the data flow system on data 
partitioning. The bridge between the abstract 
representation of data chunks and their actual type is the 
Type Manager. It is able to make use of external classes 
(defined at the application level) where all the file type 
specific functionality can reside. The classes are 
dynamically loaded whenever the application layer needs 
partitioning, files reconstruction as well as information 
related to the collection of chunks (i.e. the number of 
chunks). It is the applications' developer task to 
implement the data chunks handler classes. The data flow 
management system only provides a set of interfaces that 
help to implement the partitioning logic. For example, one 
might need to handle two types of files in their distributed 
application: image files and text files. In case of the image 
files a data chunk might be represented by a rectangular 
region of the initial image. Multiple such chunks can 
cover the entire image. An image can be split into 
rectangular chunks by dynamically invoking the image 
partitioning method. In case a node needs an entire file 
that is spread all across the system, the data flow system 
can acquire all its chunks from different hosts and 
recompose the image by dynamically invoking the image 
reconstruction method. In case of a text file, the chunks 
can take the form of paragraphs, or pages, or simply and 
array of characters of a certain size. In a similar way the 
files can be dynamically partitioned and reconstructed. 
Later in this paper we will discuss the development effort 
involved in writing such classes. 

Data scalability and synchronization 

As we mentioned before, the data flow system must be 
able to scale up dynamically at run time without using a 
central node. This functionality is achieved by the 
Discovery Unit which broadcasts and listens to discovery 
messages. There are two API interfaces that allow the 
data flow management system nodes to communicate 
with each other and also with the client application.  

A key feature in any distributed system that handles large 
amount of data is keeping data synchronized. Spreading 
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data around the network while keeping it up to date uses 
events. Each node that has updated a data chunk must 
broadcast to all other nodes that he is aware of about the 
changes, and event handlers update the timestamp of the 
affected data. Depending on the nodes connectivity there 
are two choices: 

1. No event retransmission – the ideal situation when the 
network bandwidth allows 1 to 1 connections between 
any two nodes in the system; it is enough to broadcast an 
update event once to all other nodes in the system. 

 

Fig. 4. Retransmission not needed for event propagation 

2. Event retransmission – when there is at least one node 
not interconnected with all other nodes in the system. To 
make sure that node is always notified about update 
events, retransmission is necessary; to stop infinite loop 
of update events nodes employ timestamps (whenever an 
update event time stamped in the past it will be ignored) 

 
 

 

Fig. 5. Events retransmission 

A data flow scenario 

The data flow algorithm is based on availability tables. 
Let us analyze briefly a concrete scenario. If we assume 
that the data flow management system consists of nodes 
N0, N1 … Nn, let node N0 be interested in aquiring data 
chunks C1, C2, … Cm. N0 will broadcast a request for 
C1,...Cm to the entire system. 

  

 

 

 

 

 

 

 

 
Algorithm 1. Data flow 

 
Nodes N1...Nn reply back to N0 with a subset of C1,....Cm 
that they host As soon as the replies arrive, N0 builds a 
chunks availability matrix having as rows the nodes 
N1....Nn and as columns chunks C1...Cm. (Ni,Cj) gets 
valued 1 if the chunk Cj is available on host Ni, otherwise 
it gets valued 0. N0's main goal is to establish as many 
connections as possible, but not more than one connection 
per serving host (at most n-1 connections at a time).  
Chunks availability responses are performed in an 
asynchronous manner so that N0 won't have to wait for all 
responses before proceeding with transfers. Instead it will 
establish connections as the responses arrive, overlapping 
chunks transfer with availability requests. Whenever a 
chunk transfer completes, the External API will be 
informed about it and the client application can start 
processing the newly acquired data. As chunks might 
spread across the system while N0 transfers its chunks, the 
availability matrix will be constantly updated by sending 
new availability requests whenever a chunk transfer 
completes and N0 has established less than n-1 
connections (free download slots available).  

The Algorithm 1 describes the data flow. 

Data partitioning and support for load balancing 

As previously mentioned, the user is able to retrieve 
exactly the data of interest causing an important reduction 
of the amount of data that travels through the network. A 
data chunk is basically any logic unit of data extracted 
from a data set (usually a file) according to a certain 
algorithm that reflects the application’s needs. The data 
extraction is based on the most simple principle: request – 
answer. The application places queries against the data 
flow management system, queries are broadcasted in the 
entire system, each node invokes the appropriate chunker 
(the one associated with the request’s type), the chunker 
extracts the logical piece of data according to its internal 
algorithm (custom algorithm designed to serve the 
application environment’s needs), and ultimately it replies 
back with the data chunk. 

In distributed applications it often happens that the 
processing of a data chunk requires less time than the 
transfer of the data itself. For this reason it might be a 
good practice to migrate the processing task towards the 

N0 THREAD 1 
procedure HandleChunkRequest(P0, ..., Pm) 
     BroadcastChunkRequest(P0 ,... , Pm) 
     while  exists Pi not transferred, i=1,m  

if available[Pi , Hostj] = true, j=1,m then 
               AcquireThreaded(Pi,Hostj) 
           wait(response) 
 
N0 THREAD 2 
procedure ReceiveChunksInfo(found, Host) 
     if found[Pi] = true,  i=1,m then 
          available[Pi,Host] = true 
          notify(raspunsNou) 



     

data than transferring data to the processing host. DATA 
FLOW MANAGEMENT SYSTEM is able to provide 
through its external API locating information about the 
data it holds (data aware system). It is the application's 
task to query the system for data location information and 
migrate the processing tasks throughout the nodes in order 
to reduce or eliminate the data transfer time. 

Developer's task: Implementing Chunker classes 

Chunker classes define how files or data objects are split 
into data chunks. A chunker class is a class that 
implements a Chunker interface defining the following 
content: requests structures, Response structures, Data 
Requests handlers, Meta-Data Requests handlers 
(ensuring data-awareness). An important feature of the 
system is that not all nodes need to hold all chunker 
classes known by the system. They only need the 
chunkers associated with the data they serve. If unknown 
type of data is requeste the node can dynamically load its 
associated chunker ar run-time. 

5. EXPERIMENTS AND RESULTS 

Figure 6 illustrates the final design, resulted from the 
integration of the two subsystems previously described: 
the state machine based distributed system (SMBDS) and 
data chunk flow management system (DCFMS). 

 

Fig. 6. The result of the evolutionary design: 
SMBDS-DCFMS integration 

Ideally each host would run one instance of each system. 
However this is not a constraint. For maximum 
performance it is recommended that each SMBDS 
process should be bound to a local DCFMS process. The 
former subsystem will manage the execution of state 
machines, acquiring data for their execution via the 
external API interface of the second subsystem. Its 
processes interact with the DCFMS process (through an 
external API) in order to acquire input data for each state 
of the machines. At the same time SMBDS procesess will 
interact with each other for migrating tasks according to 
localization information offered by DCFMS, whose 
processes also interact between them as discussed in 
section 3. Once integrated, a new issue appears, namely 

scheduling the execution of the state machines as well as 
the transfers between them so that the causality 
constraints between machines states is accomplished and 
the execution time is as short as possible. The states of the 
state machines can define input-output dependencies 
between them as no state execution can be performed 
until all input data has been acquired. As a consequence 
there can be considered two types of causality constraints: 
internal (between the states of each machine) and external 
(between the states of different machines).  

For a better understanding of the scheduling algorithm we 
will consider a state machine as being a task composed by 
many subtasks and we will try to schedule the subtasks so 
that they fulfill the causality constraints. Scheduling 
subtasks instead of tasks is perfectly possible due to the 
migration of state machines. By using migration of state 
machines towards data, one can reduce the number of 
transfers through the network. In (Wang et al, 1997) there 
has been defined a genetic algorithm for scheduling 
subtasks in distributed environments. The model used is 
slightly different than the one introduced in this paper. 
The main differences are related to the number of 
processors per machine which is at most one, the network 
topology which uses a crossbar switch, and the transfer 
strategy which uses serial transfers for each network link. 
Instead, DCFMS uses the Ethernet model, allowing the 
network link to be used in multiple transfers at the same 
time from multiple sources while SMBDS aims to be 
suitable for multiprocessing machines. These differences 
are reflected mainly in the evaluation phase of the genetic 
algorithm. For this reason we will make use of the 
selection, crossover and mutation phases as they are 
presented in (Wang et al, 1997), while the evaluation has 
been redesigned so that it fits the integrated model.  

If we let S be the set of subtasks of all state machines and 
|S| the number of such subtasks, then S = {si, 0<=i <|S|}. 
Let P be the set of available processors P= {pj, 
0<=j<|P|}, where |P| is the number of processors. The set 
of data objects defining dependencies between subtasks 
would be D, where D={ dk, 0<=k<|D| } and |D| is the 
number of data objects. We also introduce the available 
machines which might own a subset of P as being M = { 
Mi  P |   i<>j, Mi  Mj = , 0<=i,j<|M|}, where |M| is 
the number of available machines.  

 
     p1                                    p2                                 p3 

s11 

s12 

s13 

s14 

s21 

s22

s23

s24

s31 

s32 

s3

d

d

d3

d4

d

d9 

d

d

d8

d1

d10 
d12

d1

S = {s11,  s12, s13, s14, s21, 
s22, s23, s24, s31,s32,s33} 
|S| = 11 
 
D={d1, d2, d3, d4, d5, d6, d7, 
d8, d9, d10, d11, d12, d13} 
|D| = 13 
 
P = {p1, p2, p3} 
|P| = 3 
M = {M1 M2,}, M1={p1}, 
M2={p2,p3} 

Fig. 7. The execution model 



     

In Fig. 7 we illustrate an execution example for three state 
machines scheduled for execution on three different 
processors. We may notice here the internal and external 
causality constraints defined by the data objects. Data 
objects are modeled in the context of the data flow 
subsystem by logical partitioning of data. The next step is 
to define a chromosome structure. The chromosome in 
our case represents a complete schedule for a set of 
subtasks. The chromosome will be composed by a 
matching string and a scheduling string. The matching 
string defines a mapping between the available processors 
while the scheduling string defines the order of execution 
for each state. An example of a chromosome is presented 
in Fig. 1. There are available 5 processors that need to 
execute 7 subtasks. 

 

s0  s1  s2  s3  s4  s5  s6 
p0  p3  p1  p2  p2  p1  p4 

 
 

For evaluating the fitness value of a chromosome one 
needs to evaluate the execution time of each subtask as 
well as the size of each data object, before the scheduling. 
This is a common practice in the scheduling research field 
(Freund, 1994; Singh and Youssef, 1996).  

Before proceeding with the chromosome evaluation we 
will make the following assumptions: each machine can 
perform multiple transfers at the same time on both input 
and output lines, the transfer time for a locally available 
data object is considered to be zero, all machines use 
network links with the same bandwidth (considered to be 
of two units) for both input and output, the bandwidth is 
shared equally among all running transfers.  

In the remainder of this section we will analyze an 
example of the chromosome in Fig. 8. Table 1 defines the 
size of each data object while Table 2 defines the 
execution time for each of the subtasks on every 
processor. 

Table 1. Data size 

Table 2. Execution time 

As mentioned before each subtask will be scheduled as 
soon as its data objects become available. A data object 
will be transferred towards its associated subtasks as soon 
as it becomes available. The scheduling of subtasks and 

data transfers for the chromosome in Fig. 8 is presented in 
Fig. 9. 

  M0    M1    M2    M3 

T  p0  Data  p1  p2  Data  p3  Data  p4 

1              

2         
s1 

    

3 

  
s0 
             

4        
D1 

    

5             

6    

  
d0 
        

d2 

  

7      

s3 

     

8              

9              

10              

11      

s2 

       

12            

s6 

13      
s5 

        
14          

s4 

           

Fig. 9. Chromosome scheduling 

Subtask s1 ends at moment T2 and produces d1 of size 2 
needed for s3 to start its execution and d2 of size 6 needed 
for s6’s execution. For the next two time intervals d1 and 
d2 will share the output bandwidth of M2 equally (transfer 
speed of 1 unit). At moment T4, d1 will finish transferring 
as the simultaneous transfer of d0 from M0 does not affect 
the download speed of M1 as it is already limited to one 
unit due to the shared output bandwidth of M2. Even if M0 
can upload data with full bandwidth (2 units), M1 can 
increase the download speed only after T4. The same 
applies for object d6. The fitness value of the chromosome 
in figure 8 will be 14.  

Using the above presented algorithm, the state machine 
based initial framework design, completed with the data 
flow management system, has been evaluated. There will 
be considered two scenarios: running applications by 
taking profit from tasks migration and running 
applications without any migration. In the first scenario 
there will be used all features of both (sub) systems. The 
second scenario requires the tasks to be equally 
distributed across the environment (in arbitrarily order) 
without any kind of migration (required remote data will 
always be transferred).  

The results of the two scenarios are to be compared. 
There have been considered three categories of 
applications depending on their needs for communication: 

• low communication applications (0 ≤ |D| ≤ (1/3) |S| )  
• medium communication applications ((1/3) |S| ≤ |D| < 

(2/3) |S|) 
• high communication applications ((2/3)|S| ≤ |D| < |S|)  

The execution time for subtasks (each state of state 
machines) has been randomly picked up from the interval 
[1-10]. The size of data objects has been picked up from 
the interval [5-20]. The network speed on both input and 
output has been considered to be equal to 1.  

Data  Size 

d0  5 

d1  2 

d2  6 

d3  3 

M  P  s0  s1  s2  s3  s4  s5  s6 
M0  p0  3  4  2  5  3  2  1 

p1  4  2  5  4  3  2  3 M1 
p2  2  4  4  3  3  2  4 

M2  p3  3  2  3  2  2  4  3 
M3  p4  4  5  6  8  7  5  6 

s0 s1 s2 s3 s4 s5 s6 

d0 

d2 

d3 

d1 

Fig. 8. Chromosome example 



     

We considered two computational environments: the 
former is composed of 8 machines with 2 processors each, 
and the latter is composed of 32 machines with 2 
processors each. The algorithm was executed using the 
“elite chromosome” strategy which keeps an elite 
chromosome that is updated as better chromosomes are 
discovered. The algorithm stops after 150 cycles without 
improving the elite chromosome. For each testing 
scenario have been run 100 execution configurations. The 
final result has been considered to be the average of all 
results. There have been considered a number of 300 
subtasks (states). It is known that each data object defines 
at least one dependency between two subtasks. We will 
call number of additional dependencies the number of 
dependencies defined by a data object excluding the first 
(basic) dependency. The total number of additional 
dependencies (across all data objects) will be picked 
randomly from the interval [1%-35%]. The distribution of 
additional dependencies across data objects will also be 
generated randomly. Table 3 presents the execution time 
for each scenario, while Table 4 presents the amount of 
data transferred in each scenario.  

16 proc. / 8 machines  64 proc / 32 machines No. 
of 

states 
Exec time 

‐ 
migration 

Exec. time 
no 

migration 
Gain 
% 

Exec. 
time 

migration 

Exec. time 
no 

migration 
Gain 
% 

1 – 
100  145.00  219.90  34.06  89.55  130.90  31.58 

101‐ 
   200  246.45  351.10  29.80  146.55  199.35  26.48 

201‐ 
   300  369.15  482.45  23.48  202.10  255.40  20.86 

Table 3. Execution time results. 

16 proc. / 8 machines  64 proc. / 32 machines No. 
of 

states 
Amount 
of data ‐ 
migration 

Amount of 
data – no 
migration 

Gain 
% 

Amount of 
data – 

migration 

Amount of 
data – no 
migration 

Gain 
% 

1 – 
100  782.20  898.05  12.90  871.04  943.20  7.65 
101‐ 
200  1762.46  1963.07  10.22  2342.24  2496.25  6.17 
201‐ 
300  3258.20  3580.73  9.00  3817.17  4010.90  4.83 

Table 4 –Transferred data results 

Applications with low communication have employed 
between 1 and 100 data objects. We noticed a loss of 
computational gain between the 8 machines system and 
the 32 machines system that can be explained correlated 
to the loss in data transfers gain; allocating subtasks on 
many machines requires data to be spread across a wider 
environment which causes more transfers on the network 
and implicitly causes delays on the computational level. 
The same applies to the other two categories of 
applications. Another conclusion based on the two tables 
is that the computational gain and transfers gain reduce as 
the number of subtasks increases. This was somehow 
predictable; the more data objects involved in the 
execution, the more transfers are to be scheduled and the 
more delays are to be caused at the computational level. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper we reviewed the motivations for 
computational steering and introduced an evolutionary 
design which considers two important aspects, program 
steering and data steering, and tries to integrate them into 
a unique framework. The initial design was for a 
distributed (sub) system for managing computational 
tasks represented as state machines. It proved enough 
robust, scalable and flexible, able to accommodate the 
conceptual model for a second (sub) system, for data flow 
management across the distributed environment; this 
works with chunks of different types in an abstract mode, 
without actually knowing what is inside the chunk, thus 
leaving the data partitioning up to the application level. 
This is very important from an application perspective, 
allowing it to map data chunks to processing tasks very 
efficiently. The integration of the two systems has been 
based on API interfaces. The experimental section of the 
paper illustrates how the two subsystems work together, 
how it can reduce in a considerable manner the 
development time and presents integrative results based 
on a genetic algorithm for static scheduling. 

State machines scheduling has been performed at states 
level by using a genetic algorithm. Experimental results 
showed considerable computational gain especially in low 
communication applications where the execution time can 
be improved by up to 34% while the amount of data 
transferred reduced with up to 12.9% related to non 
migrating executions of the same workload. 

Our future work intentions will consider the development 
and inclusion in the combined framework (SMBDS – 
DCFMS) of several algorithms for load balancing and 
dynamic allocation of computational resources. Making 
these algorithms “reactive” to available computational 
resources, on one hand, and to small changes in data 
distribution across the virtual computational environment, 
on the other hand, could lead to improved predictable 
performance, compared to the performance attained in the 
case of static allocation and presented in this paper. We 
intend to address in a more detailed survey paper the 
development of dynamic load balancing of computational 
resources combined to dynamic data replication 
techniques.  

Up to now, the effort of innovation in the distributed data 
flow was focused to finding of new techniques of logical 
partitioning and to offering, as much as possible, 
complete information for data localization. Future work 
should be directed towards the optimization of transfer 
techniques among the nodes of a distributed system. 
Monitoring network traffic and the development of 
algorithms for network routes ranking could help deciding 
which route is the most appropriate route for faster 
transfers. The selection of an optimal dimension for data 
chunks that are transmitted across a network, together 
with caching techniques, might improve considerably the 
availability of data at the level of computational nodes. 
Employing probabilistic algorithms for simple (but not 
simplistic) replication of data and state machines may 



     

bring more efficiency and stability to a system that, in our 
opinion, has a great potential of overall improvement. 

The experiment and analysis fulfilled also convinced us 
on the potential benefits that a visual environment for 
programming and execution may bring. The design of a 
friendly GUI (graphical user interface) appropriate for the 
system described in this paper should allow: visual 
definition of state machines and interactions among them, 
easy intuitive definition and change of specific execution 
scenarios, visual monitoring of executions and, last but 
not least, joining and combining different techniques for 
computational steering.  
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