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Abstract: In this paper the problem of stabilization of a particular class of hybrid systems is
approached. For the class of discrete-time hybrid systems with time-delays, it is shown that under
some assumption it is possible to express these systems in a common representation: piecewise
affine systems. The stability of such systems is proved through Lyapunov theory, more accurate
through quadratic, multiple Lyapunov functions. For stabilization task we design a piecewise
linear state feedback control law. Finally, some simulation results are presented.
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1. INTRODUCTION

Hybrid systems are dynamical systems with two
components: discrete and continuous dynamics. The
discrete dynamics are represented by digital automaton or
algebraic equations, and the continuous dynamics are
represented by differential or difference equations.
Generally, the study of the hybrid systems is defined as
the study of systems which involve interaction of the
above dynamics.

In the last years, the problems of analysis, verification,
computation, stability and stabilization of hybrid system
were studied with growing interest.

In this paper, we deal with stability and stabilization of a
particular class of hybrid systems, i.e. discrete-time
hybrid systems with time-delays.

The main approaches existing in literature for stability of
hybrid systems are related to Lyapunov stability and
Lagrange stability (Davrazos and Koussoulas, 2001). The
Lyapunov technique uses four concepts to prove stability
of the studied systems: common Lyapunov functions,
multiple Lyapunov functions, modified Lyapunov
functions and Poincaré maps. For discrete-time affine
systems the main approaches are based on common and
multiple Lyapunov functions (Ferrari et al., 2001).

The paper is organized as follows: in Section 2 is defined
a new class of hybrid systems, i.e. discrete-time hybrid
systems with time-delays, in Section 3 is presented a
method to transform this class of hybrid system in a
common representation such as, piecewise affine systems
(Ferrari et al., 2001), in Sections 4 and 5 is presented an
illustrative example for which we studied the stability and
stabilization.

2. DISCRETE-TIME HYBRID SYSTEMS WITH TIME-
DELAYS

The hybrid systems with time-delays represent a new
research direction in modelling and control areas
(Kulkarni et al., 2007; Liu, 2010).

Definition 1: A general discrete-time hybrid system with
time-delays is an invariant, linear, discrete-time system
defined by the following family of piecewise affine
systems with time-delays:
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polyhedral partitions in state-input space.
Definition 2: A discrete-time, invariant, linear, hybrid
system with a constant state time-delay is a subclass of a
family of system (1), described by the following family of
piecewise affine systems with time-delay:

x(k +1) = Ax(k)+ Ayx(k —h)+ Bju(k) + f;
y(k) = Cix(k)+ Ciyx(k —h)+ Dju(k)+ gi
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where h is constant time-delay.
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Definition 1.3: A discrete-time, invariant, linear, hybrid
system with a constant input time-delay is a subclass of a
family of system (1), described by the following family of
piecewise affine systems with time-delay:
{x(k +1) = Aix(k)+ Bju(k) + Bjru(k —h)+ f;
y(k) = Cix(k)+ Diu(k)+ Diyu(k ~h)+g;

e

where h is constant time-delay.
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3. EQUIVALENCE OF TWO CLASSES OF HYBRID
SYSTEMS

Obviously, the representations (2) and (3) of the hybrid
system can be translated using appropriate state
transformation in a common representation such as,
piecewise affine systems.

We consider the following transformation:

{Zj(k)iX(k—j), j=1..h 4)

then, the system (2) becomes:

(5)

f,=[fiT 00 o]r,
A A 00 0] B |
0 0 I 0 -0 0
A=/0 0 0 I 0|, Bi=|0],
1 0 00 - 0] | 0|

6i:[Ci Cil 00 0]'M:[Inxn Onxhn]7

where O, IS anxhn zero matrix and I, is a
nx n identity matrix.

Similarly with the above procedure, we consider the
following transformation:

j=1...h (6)

then the system (3) is transformed in (5) with the
following parameters:
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In Heemels et al. (2001), under additional assumptions, it
is shown that the equivalences between several subclasses
of hybrid systems are obtained. Some examples of such
subclasses are: linear complementary systems (Heemels et
al., 1999), mixed logical dynamical systems (Bempoard
and Morari, 1999), piecewise affine systems (Ferrari et
al., 2001).

4. STABILITY OF A DISCRETE-TIME HYBRID
SYSTEM WITH STATE TIME-DELAY
We consider a system of form (2) with following
parameters:
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where N :[1 -1 OM] and M =[I2X2 02X4]

In figure 1 is presented the free evolution of states of
discrete-time hybrid system with state delay (evolution of
the first two states of piecewise affine system). In figure 2
are presented the active partitions of the piecewise affine
system. The evolutions are obtained for the following
initial conditions:

Xl(o): Z21(0) = le(o) =2, %, (0): 222(0) = 212(0): 4
uy(k)=u,(k)=0,0<k <100
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Fig. 1. Evolution of states of discrete-time hybrid system
with state delay.

The stability of piecewise affine systems was investigated
in several papers (Johansson, 2007; Ferrari et al., 2001;
Mignone, 2002). The main approaches use the common or
multiple quadratic Lyapunov functions. Based on the
results presented in the above references, we can establish
the following result:
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Fig. 2. The active dynamics of the piecewise affine
system.

Proposition 1. The origin of the system
X(k +1)= Ax(k), where A,i=12 are given by (8), is
asymptotically  stable, if there exist matrices
R=RT >0, i={1,2} such that the positive definite

function V = (X)' RX, VX e X;, satisfies:

V(x(k))-V(xX(k -1))<0, vk e N” ©9)

The quadratic, multiple Lyapunov functions can be
computed by solving the LMIs:

PR=P >0, P,=P, >0
A'P,A -P <0, AJPA,-P,<0
A'RA -P <0, AJRA,-P,<0

(10)

Solving system (10) we determine the matrices P, and

P,
SO:
(4838 090 008 170 6.39 —2093]
090 5372 -1.35 -265 -3.69 -1.31
P 008 -1.35 2695 245 409 -239
1.70 -2.65 245 1976 -0.96 -0.29
639 -369 409 -0.96 3539 155
|-293 -131 -239 -029 155 33.53]
(6372 —-494 -495 253 797 —433]
-494 5289 231 -087 -487 001
P, = -495 231 2017 076 191 -1.33
253 -087 076 19.05 -1.11 -0.56
797 -487 191 -111 3448 1.89
|-433 001 -133 -056 189 3332]
(11)

The quadratic multiple Lyapunov functions are expressed

by:
Vi(%)=(X)"Rx, Vi=12 (12)

In figures 3 and 4 are represented the quadratic Lyapunov
functions for considered subsystems (i=1 and i=2).



We observe that every moment k when the subsystem i
became active, the corresponding energy function V; is

decreasing from the value V; which had the last time
when the subsystem i was active.

Form figure 5, where is represented V(X), it can be

observed that the inequality (9) is satisfied for all k N

5. STABILIZATION OF A DISCRETE-TIME HYBRID
SYSTEM WITH STATE TIME-DELAY

For hybrid systems of form (5), with parameters given by
(7) and (8) we can determine a piecewise linear state

feedback control law of form:
ulk)=Kix(k), vi=12 vk (13)

where K; =W;R,Vvi=12, and W; are solutions of the
following LMIs (Mignone, 2002):

{ Q (A2Q2+BZW2)J>O
(AzQz +BW, )T Q, (14)
[ Q, (Ain + B1W1)J >0
T
(A1Q1+51W1) Q
where Q=R Q,=P*, and P,, P, are given by
(11).
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Fig. 3. The quadratic Lyapunov function V.
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Fig. 4. The quadratic Lyapunov function V.
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Fig. 5. The quadratic Lyapunov function V .

Solving the system (14) we determine the solutions:

" 0.0023 o T
~0.0007 —0.0017
0.0114  0.0009
W, =
0.0007  0.003
~0.0018 —0.0002
| 0.0011 0 |
[0.0014 00154 '
~0.001 —0.0062
~0.0015 —0.005
W2=
~0.0002 0.0029
~0.0004 —0.0042
| 0.0002  0.0021 |

So, the control law (13) is expressed by:
u(k)=[01 -0.05 03 005 0 0] x(k)
{uz(k):[o ~0.1 0.033 0.066 0 0]-x(k)
if Nx(k)<0
u(k)=[01 -006 -0.04 0 0 0] x(k)
{uz(k):[l -04 -02 01 0 0]-x(k)
if  Nx(k)>0

(15)

In figures 6 and 7 is represented the evolution of the first
two states of piecewise affine system in closed loop with
control law (15), respectively the active dynamics of the
system.

We observe that the states of the piecewise affine system,
and so the states of initial discrete-time hybrid systems
converge asymptotically to zero, when k — oo .

6. CONCLUSIONS

In this paper we presented a new class of hybrid systems,
i.e. discrete-time hybrid systems with time-delays. This
type of hybrid system, can be translated using a state
augmentation method in other common class, for example
piecewise affine systems. Based on this transformation,
we presented a method to prove stability and stabilization
of the piecewise affine system, and finally the initial
hybrid system. The stability of the system is proved by
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Fig. 6. Evolution of states of piecewise affine system.
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Fig. 7. The active dynamics of the piecewise affine

system.

using a quadratic, multiple Lyapunov functions. For
stabilization task a piecewise linear state feedback control
law was determined. Finally, some simulation results
were presented.
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