

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 14 (41), No. 1, 2017
__

19

Initial Results on the Effectiveness of a Skill-Based Approach to Human

Resource Allocation

Ionuț Murarețu*, Sorin Ilie*, Mihaela Ilie*

*Department of Computers and Information Technology, University of Craiova

107 Decebal Bvd, Craiova, Romania

(email: imuraretu@gmail.com, silie@software.ucv.ro, ela.pirvu@gmail.com)

Abstract: This paper introduces a skill based approach to human resource allocation. For this
purpose a mathematical model is introduced modelling tasks and employees as vectors of skill.
Then we present 5 strategies of allocating tasks to employees modeled as fitness functions. These
functions are then compared in a simulated environment. The conclusion of the experiment is that
allocating tasks to suboptimal employees can speed up the project delivery time at least fivefold.
The novelty of this approach is mainly that we opted for a heuristic model of recommendation
focused resource allocation that can be applied in continuous task flows.

Keywords: Mathematical model, Human resource management, Enterprise resource planning,
Optimal matching

1. INTRODUCTION

The human resource management problem within an
organization using Agile development methodology is a
challenge that is normally left to the most experienced
workers in the team. This is usually because the task
requires the assignee to know both the team and technical
details of the project. In this paper we will be referring to
Agile software development and the teams of
programmers using this methodology.

When large teams and task backlogs Minor et al.(2007)
are involved the task of human resource management
critical and time consuming. Therefore, a time-saving
solution is called for. The systems we found during our
literature review are based on optimization algorithms.
These approaches tend to be hard to put into practice
because in real life the input data keeps changing: new
tasks appear, employees leave, team leaders impose their
decisions based on experience Yngve et al. (2016). Any
of these situations require the mentioned approaches to re-
assign some of the tasks in order to reach the optimum
and never take into account the current load of each team
member. As presented in paper Minor et al (2007), task
flow in Agile development has a feedback loop Fig.1.
This is why we believe that creating a mathematical
model based on fitness evaluations and ordered lists of
recommendations for task assignment would be more
directly implementable in practice.

The rest of this paper is structured as follows: section 2
presents related work from our survey of the literature on
the subject; section 3 presents the mathematical model of
the proposed approach and the performance measures;
section 4 briefly presents how this approach could be
implemented in practice; section 5 presents an

experimental simulation with the proposed approach and
discusses the results; section 6 discusses future work and
draws conclusions.

Fig. 1. A simplified business process model of task flow

management in agile software development.

2. RELATED WORK

Bojan et al (2012) creates an agent-based simulation
(ABS) Helbing et al (2012) for “Simulation Process
Simulation Modeling (SPSM)” applied in the case of a
real software development project. They show that the
ABS can estimate project duration well. Also they
propose an effort function which estimates the behavior of
a developer for a given task. The authors do not attempt to
present how this simulation can be used to improve task
management in the real world.

In paper Colucci et al (2004) the authors propose a skill
based solution for task assignment in an organizational
context. They use weighted bipartite graph in which arcs’
weight represents computed suitability of users on each
task using a skill matching algorithm. The skill matching
system has two components. The first component uses

Task flow in Agile development

dev new ready

QA: rejected

done
 QA:
accepted

External backlogs
maintenance

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 14 (41), No. 1, 2017
__

20

classical information retrieval techniques with semantics
to extract individual profiles from text files. The second
component of the system sends extracted profiles to a
matchmaker service. Third component is based on Khun
algorithm Burkard et al (2012) will do the assignment
based on the score obtained by the second component.
The authors presume that the number of tasks equals the
number of workers which is restrictive to say the least.
Their algorithm requires a complete reallocation in case a
single extra task would appear.

In paper Roque et al. (2016) the authors propose a multi-
objective approach for minimizing cost and time of
software development based on the Scrum(Stellman et al
2014) method. They calculate both similarity of tasks and
skill matching to obtain time and cost values for tasks.
Then the computed time and cost are being minimized
respecting that the amount of overtime worked by an
employee which cannot be greater than allowed and an
employee cannot be assigned to a task if he does not
possess a required skill.

Otero et al (2009) propose a resource allocation
methodology called Best-Fitted Resource(BFR) that
describe how learning of a required skill is affected by a
previous knowledge on a related skill. The BFR
methodology has four steps with each step resulting in a
table. Their hypothesis is supported by a survey they
conducted on real subjects. Their methodology setup
requires skills to be marked as related to other skills if
they can influence learning speed for those other skills.

In paper Bădică et. al. (2011) the authors present a way to
match service providers and consumers using weighted
utility functions.Service providers and consumers are
represented as agents (Ilie et al 2010). This approach is
similar to our own however it is applied between
organisations and at each point the users need to fill in a
form to fill in the service attributes. In order to keep
consistent service attributes throughout this system, a
term ontology is used. The authors present no
evaluationand only minimal mathematical formalization.
Therefore, it cannot be easily adapted to a task
management scenario.

It is evident that in the very specific scenario in which a
project has just started with a completely fresh team the
aforementioned approaches are valid and quite efficient at
keeping cost down. However, besides the individual
comments we had on the papers we also have a global
criticism of the papers we reviewed. The approaches they
propose are static: they expect to know all the tasks from
the beginning, no reassessment and the team leaders
cannot impose their will on the system. None of the
approaches take into account the fact that the employees
might already have workload assigned, presuming that all
employees are completely free at the time of assignment.
This does not reflect the reality of team and project
management in practical situations, especially in the
domain of software development as shown in the real
world analysis presented in McBride et al(2008). At this

time, we do not propose a replacement approach for the
usual optimization algorithms but rather we evaluate the
effectiveness of a recommender system. This system
could be used after the initial optimal assignment using an
iterative algorithm.

3. MATHEMTICAL MODEL

In this section we will present how we model and propose
to calculate instantaneous fitness functions based only on
current task assignment for each employee and skill
suitability. Towards the end of the section we will present
performance measures calculated on the tasks assigned so
far to the employees.

We define k as the total number of skills required in a
project. This number is not task dependent but a global
variable. A project is assigned to a team Λof n employees
P . The project also has an initial ordered list Θ of m tasks
T defined from the start.

An employee P is modelled as a vector of k skill levels Si.

� = (��, ��, ��. . . �
) (1)

A task T is modelled as a vector of k skill levels Si
expected from an employee in order to finalize this task
efficiently and an estimation of time for task completion
given a suitably adept employee.

� = {(��, ��, ��. . . �
), ��} (2)

We can now visualize a task and employee with 10 skills
as a radar chart (Kaczynski et al 2008). For example, in
Fig. 2 we show visually how the required skill levels and
the employee skill levels overlap.

A few simplifying assumptions are:

• all employees start working simultaneously on their
assigned tasks in sequence until they finish them all

• it may be necessary to assign a task to an employee
of inadequate skill level but in this case the
estimated time of task completion will go up, as
explained in the rest of this section.

• tasks do not depend on other task results. For

example, this could be a SCRUM1Sprint, a project

phase, or maintenance tasks.

• the speed of learning a new level in a skill is directly
proportional to the employee’s current skill level. A
higher level implies faster acquiring of new
knowledge in that skill.

• all employees have the exact same cost per hour
therefore only hours will be taken into account. The
number of hours will be sufficient in assessing
performance.

1The SCRUM methodology of task

managementhttps://www.scrum.org/

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 14 (41), No. 1, 2017
__

21

Fig. 2. Representing tasks(blue) and employees(orange)

as areas in radar charts. On the left: an employee that
can immediately do a task. On the right: an employee
that needs to learn more about 3 of his skills before
being able to handle the task The overlapping area
becomes purple.

We define positive distance to minimum skill �(�, �)�
that is strictly >0 if and only if the employee P i-th skill
level is less that that required by task T. Quantitatively,

the value of �(�, �)�is the actual modulo difference of

skill. In Fig2 , �(�, �)would be the number of points of a
skill that are required by a task but unsatisfied by an
employee (blue areas). Mathematically this can be
calculated for skill number i as follows:

�(�, �)� = (�����(�����))����(�����)
� |��−��| (3)

where sgn is the mathematical function signum that

returns 1 if the parameter is positive, −1 if the parameter
is negative and 0 if the parameter is 0. The first fraction
equals 1 if �� > ��and 0 otherwise

Similarly to the work of Otero et al (2009) we estimate
the amount of time for a employee P to finalize task T

depending on the �(�, �)� and the level of the employe.
For each distance unit we add !/��to the initial estimated
time e.

�(�, �) = �� + ! ∑ %(&,')�
��

� (4)

where ! is the difficulty constant of each skill in
particular. This constant determines how hard it is to lean
a new skill level.

We define the instantaneous fitness functions (: * × , →
ℜ, where *is the set of a employeesP and ,is the set of
tasks T, using the following rationales:

1. assign to the best prepared employee. The rationale
being that this person will do the task in the least
amount of time. In Fig 2 the orange surface of the
employee should cover as much as possible of the
radar and implicitly the task.

2. assign to the most suitable. The rationale here is that
the task should always be assigned to the employee
that is closest match to the skills required by the
task. Compared to strategy 1, this should free up
some time for the best employees while avoiding to
use ill prepared employees for difficult tasks. In Fig2
the aim would be to find the employee and the task
that over impose exactly.

3. assign to the employee that can do the task the
fastest. This strategy does not take into account how
busy that employee might be. assign to the most
suitable employee that is least occupied.

4. assign to the most suitable employee who is is also
least occupied.

5. assign to the employee that can do the task the
fastest but is also least occupied.

In case number 1 to find the best employee for a task, we

define the fitness function (� of an employee P for a given
task T as follows:

(�(�, �) = ∑ (����)��/0
∑ ∑ (�1���)��/�203120

 (5)

where �4� is the level of skill i of user j, these values are

translated with +1 in order to avoid cancellation of
necessary skills from the task in case l=0.

The denominator is used to refer each employee to the
whole team as a whole, i.e. the fraction is normalized.

In case 2 to find the most suitable employee for a job, we

define the fitness (� as follows:

(�(�, �) = 5(�, �) (6)

where r is the correlation of T and P defined as the dot
product of their skill vectors as follows:

5(�, �) = ∑ ����/�20
6∑ ���/�20 6∑ ���/�20

 (7)

In case 3 in order to identify the fastest employee for a

given task T, we define the fitness function (�as follows:

(�(�, �) = �
7(&,') (8)

The fitness function (�generates the least amount of man-
hours by always assigning the fastest employee to each

task. Implicitly (�generates the least amount of cost.

In case 4 to identify the most suitable employee that is
least occupied at the moment. In essence the fitness of the
employee is directly proportional to r, and inversely

proportional to estimated time of the task �(�, �) when it
is executed by P , and the sum of we define the fitness
function (8as follows:

(8(�, �) = 9(&,')
7:

;<
7(&,') (9)

Where:
r is the correlation between the skill vector of the task

T and the skill vector of the employee P as defined above

�=is the sum of all time estimations for employee P on

tasks allotted to him/her

�̅ the mean of the �=for each employee within a

margin of ? to a perfect correlation r=1 to task T

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 14 (41), No. 1, 2017
__

22

In case 5 to identify the fastest employee that is least

occupied at the moment, we define the fitness function (
similarly to case 4, as follows:

(@(�, �) = �
7:

;<
7(&,') (10)

We will now define performance measures and
mathematical models that they are derived from. After
applying these allocation strategies, the result is would be
a set of m employee-task pairs with the fitness function up
to that point in the project lifetime similar to the work of
Colluci et al (2004).

AB = {(�, �)|∀ � ∈ ,, ∃� ∈ *, ((�, �) = GHI�J�
 ((B(�� , �))}

where x is the index of the fitness function, used to do the
task allocation, as it results from the current paper

In order to compare the four fitness functions, we
calculate the following performance measures similarly to
Minor et al (2007):

• estimated project delivery time d. Defined as the
estimated time it takes the busiest employee to finish

his/her work.

K(A) = GHI{�(�, �)| (�, �) ∈ A} (11)

• project total man-hours L(A). This number also
reflects the project cost, as this is directly
proportional to the financial resources required by
the development team

L(A) = ∑ �(�, �)(&,')∈M (12)

4. IMPLEMENTATION

This approach is meant to be used as a recommender
module added to an existing task management system like
Redmine2. The module would receive as input a given
task T and the complete list of employees. It would then
calculate the fitness of each employee w.r.t. to the given
task. This is done by taking into account the considered
employee skills, the current unassigned task skill
requirements and the currently assigned tasks to the
employee. See figure 3 for the information flow (Ilie et.
al. 2012) of the implementation.

The proposed mathematical model does not require
multiple iterations. The output would be a descending
ordered list of employees in terms of fitness for each
unassigned task. That is to say, the complexity of the
recommender algorithm is O(n). Therefore, tasks can be a
variable queue just like in real projects.

For the purpose of finding the fitness function with the
best performance we implemented an algorithm that

receives as input the list of unassigned tasks ,and the list
of employees *.

2The Redmine task management system website

https://www.redmine.org/

Fig. 3. In this figure, the tasks, employees and team leader
are part of the task management system, the
Recommender module is the additional module
needed to tell the team leader assign tasks

For each unassigned task � ∈ , we then calculate the

fitness function ((�, �) for every employee ∈ * . We can
then evaluate the estimated time in which the employee

with the maximum fitness function (can finalize the

current task and add it to the allocation A. At this point

performance measures can be calculated over A. In short
the algorithm used is as follows:

1. program Simulation (,,*)
2. begin

 for each � ∈ , :
3. for each � ∈ , :
4. * find maximum ((�, �) and

add it to A
5. * calculate e(P,T)

6. * sort A
7. * send them to the view module

8. end.

This algorithm calls a subroutine for recommendations
view at line 7 to show how this code could be used in a
real world implementation. However, this line has no
functionality for the purpose of this paper so it is not used.

For the following experiment we evaluate the scenario in
which the team leader always accepts all the
recommended task assignments. This was done in
Python3, using the amazon Cloud 9 web based IDE
equipped with an Ubuntu virtual machine4. For replication
and evaluation, the code can be found on a public gitHub
repository5.

We generated a random list of m=2000 tasks ,, n=100

employees *, with skill arrays of size k=100, skill levels

�� , �� ∈ 0. .5 and initial estimated time for each task �� ∈
1. .8. These values represent a relatively complex phase of

3 Python programming language, release 3
https://www.python.org/download/releases/3.0/
4 Cloud 9 web-based IDE from Amazon equipped with an
Ubuntu virtual machine https://aws.amazon.com/cloud9/
5 The public code GitHub repository used for the
implementation of the experimental simulation
https://github.com/sorinilie/taskmanagement

Host task management system

Recommender module
task

s

employ
ee

Leader
f(P,T) employees

sorted by f

a given
task

list of all
employees

Task queue

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 14 (41), No. 1, 2017
__

23

a project where each task requires 100 separate skills to
complete, and the complete team is composed of 100
employees of various skill levels. As these skills are
imaginary we simplified calculations by choosing the

learning difficulty of all skills ! = 1. This does not
influence the fitness function calculations since this
constant would be applied to all employees. We will not
mention the specifications of the machine we used
because no execution time evaluation will be presented.

After executing the simulation algorithm detailed in the
previous section, we calculated the performance measures
presented in the mathematical model section of this paper:
Project delivery time d and total man-hours t.
Additionally we found it interesting to present the
percentage amount of human resources allotted to the
project for each fitness function presented. The numeric
results are presented in Table 1 and visualized in Fig 4
and Fig 5.

As expected, allocation A�, “assign the task to the
employee that can finish it fastest”, has the smallest total

man-hour cost L(A�) = 80441 therefore we can use it as
a baseline for the cost discussion. Any other allocation is
more expensive, however, there are other allocations that
present a better project delivery time. The good

performance of A�is due to the fact that (�minimises the
amount of hours spent learning new skills.

The results show that A8 “assigning tasks to the suitable

employee that is less occupied” and A@ “assigning tasks to
the employee that can finish the task fastest that is also
less occupied” are the most efficient in obtaining fast
project delivery times. This is due to the fact that their
fitness function spread out the workload more evenly
between the employees.

We calculated that allocation A8 will lead to finishing the
project in K(A8) = 1284 calendar hours. Therefore, it

will bring the project to an end 93.7% faster than A�but it

costs 16.4% more than A�. Similarly, allocation A@

finalized the project in K(A@) = 1278 callender hours. In
consequence, it will bring the project to an end 93.8%

faster than A�but it costs 16.6% more than A�. We
postulate that this reduced project duration is due to the

bias for less occupied employees of (�and (8. In support
of this affirmation we present (� and (�that do not use this
bias and result in considerably longer project duration.

Table 1. Experimental result for the 4 fitness functions
proposed for comparison.

measure (�eq(5
)

(�eq(6
)

(�eq(8
)

(8eq(9
)

(@eq(1
0)

project

delivery time

deq(11)

68712

5911

20536

1284

1278

total man-

hour teq(12)

86875 87701 80441 96228 96492

resource

allocation

20% 97% 47% 100% 100%

The “best skilled employee per task” allocation A� is bad

for project duration K(A�) = 68712 and cost (A�) =
86875 . It will bring the project to an end 334% slower
than A�and it costs 7% more than A�. This strategy only
uses the 20% of the human resources, i.e. the best skilled
20% of employees will be busy while the others are
completely free. This particular allocation is completely
impractical in a real software development organization.

Fig. 4. The calendar duration of the project with the 5
strategies: 1) best worker ; 2) most suitable; 3) fastest;
4) most suitable that is least occupied; 5) fastest that is
least occupied.

Fig. 5. The comparison of the total man-hour resulting

from allocation A for the 5 fitness functions.

5. CONCLUSIONS AND FUTURE WORK

This paper introduced a skill-based approach to human
resource allocation. The conclusion of the experiment is
that allocating tasks to suboptimal employees can speed
up the project delivery time at least fivefold. The novelty
of this approach is mainly that we opted for a heuristic
model of recommendation focused resource allocation
that can be applied in continuous task flows. This topic
requires a lot of future work: natural language processing
and sentiment analysis on task comments, assessing task
progress health, adjustment of skill vectors automatically
when employees learn new skills, implementing the
system on Redmine or Taiga6.

6 A task management system that allows skills to be
specified for users and tasks https://taiga.io/

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 14 (41), No. 1, 2017
__

24

ACKNOWLEDGMENT

Sorin Ilie was supported by QFORIT Programme,
University of Craiova, 2017.

REFERENCES

BojanSpasic,Bhakti S. S. Onggo: “Agent-based
Simulation Of The Software Development Process: A
Case Study At Avl”, Proceedings of the 2012 Winter
Simulation Conference, ISBN 978-1-4673-4782-2

Helbing, D., 2012. Agent-based modeling. In Social self-
organization (pp. 25-70). Springer Berlin Heidelberg.

Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M.,
Mongiello, M. and Piscitelli, G., 2004. Semantic-based
Approach to Task Assignment of Individual Profiles. J.
UCS, 10(6), pp.723-730.

Burkard, R., Dell'Amico, M. and Martello, S., 2012.
Assignment problems: revised reprint. Society for
Industrial and Applied Mathematics, pp 42-47.

Roque, L., Araújo, A.A., Dantas, A., Saraiva, R. and
Souza, J., 2016, October. Human Resource Allocation
in Agile Software Projects Based on Task Similarities.
In International Symposium on Search Based Software
Engineering (pp. 291-297). Springer International
Publishing.

Stellman, A. and Greene, J., 2014. Learning agile:
Understanding scrum, XP, lean, and kanban. " O'Reilly
Media, Inc."

YngveLindsjørn, Dag I.K. Sjøberg ,TorgeirDingsøyr ,
Gunnar R. Bergersen , Tore Dybåa : “Teamwork
quality and project success in software development: A
survey of agile development teams” The Journal of
Systems and Software 122 (2016) 274–286

Kaczynski, D., Wood, L. and Harding, A., 2008. Using
radar charts with qualitative evaluation: Techniques to
assess change in blended learning. Active Learning in
Higher Education, 9(1), pp.23-41.

McBride, T., 2008. The mechanisms of project
management of software development. Journal of
Systems and Software, 81(12), pp.2386-2395.

Otero, L.D., Centeno, G., Ruiz-Torres, A.J. and Otero,
C.E., 2009. A systematic approach for resource
allocation in software projects. Computers & Industrial
Engineering, 56(4), pp.1333-1339.

Minor, M., Tartakovski, A. and Bergmann, R., 2007,
August. Representation and structure-based similarity
assessment for agile workflows. In International
Conference on Case-Based Reasoning (pp. 224-238).
Springer, Berlin, Heidelberg.

Ilie, S., Bădică, C., Bădică, A., Sandu, L., Sbora, R.,
Ganzha, M. and Paprzycki, M., 2012 :” Information
flow in a distributed agent-based online auction
system”. In Proceedings of the 2nd International
Conference on Web Intelligence, Mining and
Semantics (p. 42). ACM.

Bădică, C., Ilie, S., Kamermans, M., Pavlin, G. and
Scafeş, M., 2011:“Using negotiation for dynamic
composition of services in multi-organizational
environmental management”. In International
Symposium on Environmental Software Systems (pp.
177-188). Springer, Berlin, Heidelberg.

Ilie, S. and Bădică, C., 2010: “Distributed multi-agent
system for solving traveling salesman problem using
ant colony optimization”. In Intelligent Distributed
Computing IV (pp. 119-129). Springer, Berlin,
Heidelberg.

