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Abstract: The microalgae have the ability to use CO2 as carbon source and, together with the 
solar energy, to biosynthesize various components, generating O2. They have a huge potential in 
various industrial applications such as the production of therapeutic and industrial metabolites, 
biofuels and environmental applications. The aim of this paper is to control the photosynthetic 
growth of the microalga Chlamydomonas reinhardtii, in a continuous torus shape photobioreactor. 
The control strategy was to maintain the biomass concentration constant into the photobioreactor 
using the dilution rate as control variable. The main disturbance was the incident light flux. Two 
control laws were designed and analyzed in simulation, to wit a linear control algorithm and a 
nonlinear one. The linear controller was synthesized in a PI structure which was further tested in 
simulation at variable setpoints and incident light fluxes. The nonlinear controller was conceived 
in order to minimize the inconveniences encountered at the PI controller. The simulation 
conditions were identical for both controller types. 
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1. INTRODUCTION 

The Earth’s atmosphere before Life was rich in CO2 and 
CH4. In these hostile conditions the first microorganisms 
– cyanobacteria – emerged 3.5 billion years ago. For eons, 
they were the sole photosynthesizers which contributed 
with oxygen to the reducing and anaerobic atmosphere. 
The first eukaryote appeared only 1.5 – 2.2 billion years 
ago, so far no living organism ever grew larger than a 
single cell [1]. The first photosynthetic eukaryotes – 
microalgae – played an essential role in the formation of 
the actual breathable atmosphere. The microalge have the 
ability to use CO2 as carbon source and, together with the 
solar energy, to biosynthesize various components for the 
cell, at the same time generating O2 as a residue. The 
photosynthesis process underpins all these by starting 
with the tool for harvesting light, the chlorophyll. 

The microalgae stirred up the interest of scientists and 
industrialists due to their huge potential. Species like 
Arthrospira and Chlorella are widely used in human and 
animal nutrition [2]. These organisms are also used in 
various applications such as the production of therapeutic 
and industrial metabolites as the long chain 
polyunsaturated fatty acids, pigments, polycarbohydrates, 
vitamins or various biological active compounds [3]. 
However, the microalgae can be also used in 
environmental applications due to their capability to fix 
the carbon dioxide and certain heavy metals during 
growth – wastewater treatment and the greenhouse gases 
reduction – and to produce energy without emission of 

greenhouse gases – biofuels production [4]. The 
researches for new technologies will allow us to use and 
produce a clean and renewable energy just like the one 
recently approached – hydrogen production with 
microalgae [5].  

Most of the recent research in microalgal culturing has 
been carried out in photobioreactors with external light 
supplies, designed as either tubular reactors, flat panel 
reactors, or column reactors with large surface areas, short 
internal paths, and small dark zones [6]. 

The control of photosynthetic growth processes is 
generally difficult to realize because of the nonlinear and 
time-varying nature of the systems. The slow response 
and the lack of suitable on-line sensors able to read the 
most important state variables are also obstacles for an 
accurate control. 

The aim of this paper is to synthesize and test in 
simulation two control algorithms based on the Fouchard 
et al., model [7]. After a brief introduction, the second 
part describes the photobioreactor and the model used for 
this work. The third part is dedicated to results and 
discussion on the control algorithms followed by 
conclusions and references. 

2. PHOTOBIOREACTOR DESCRIPTION AND 
MODELING 

The photobioreactor modeled in this work (Fig. 1) has one 
enlightened surface of torus shape where the light falls 



 
 

     

 

perpendicularly. In this way the light per volume ratio is 
higher. The reactor is of only 4 cm wide giving thus a 
working volume of 1 L. The culture homogenization is 
provided through a marine impeller. The photobioreactor 
possess a complete loop of common sensors and 
automations for microalgae culture (pH, temperature, 
nutrients, dissolved O2), and allows an accurate control of 
the injected and collected gas (O2, H2, N2, CO2). The 
batch and the continuous mode are both suitable for this 
type of reactor [8].  

The microorganism modeled was the microalga 
Chlamydomonas reinhardtii (wt 137c strain from the 
Chlamydomonas Genetic Center, Duke University, 
Durham, USA) [7]. 

The models used at microalgae culturing are as many as 
the objectives for which they were developed and as 
complex as their utility. As commonly applied in 
photobioreactor modeling, they can describe the kinetics 
of the photosynthetic growth coupled with the light 
transfer inside the culture, which needs to be modeled as 
soon as the light is absorbed by cells. Accurate 
formulation of such a coupling, to correctly consider its 
influence on the process, is a problem on its own [7].  

In an optimal system where no factors limit the growth, 
the rate of photosynthesis and productivity is determined 
by the light availability [9].  

 
Fig. 1. Schematic representation of the photobioreactor 
operating system in turbidostat mode [7] 

 

Various works were performed on photosynthetic growth 
modeling [10], [11]. The specific growth rate (µ) 
increases along with the increasing irradiance, reaching a 
maximum value, µmax.  Further increase in irradiance may 
inhibit growth – a phenomenon known as photoinhibition. 
Although this phenomenon is well documented, it has 
often been disregarded [12], [13]. 

Fouchard et al. [7] proposed a model which describes the 
three stages which precede the hydrogen production under 
sulfur limitation conditions. 

 

The model retained 

 

The model underlying the work presented in this paper is 
the model proposed by Fouchard et al. [7]. It introduces a 
continuous formulation to describe the progressive 

transition from oxygenic growth to anoxia in order to 
obtain biohydrogen. The model is expected to be 
independent of the case under study, with corresponding 
parameters estimated from individual sets of experiments. 
This condition is important for optimizing the culture 
conditions and to investigate new protocols for 
biohydrogen and biomass production [7]. 

According to Fouchard et al. the process is divided in 
three phases: photosynthetic growth, sulfur deprivation 
and hydrogen production. For the mathematical 
simulation of the process it was considered only the first 
phase in order to demonstrate that the model, with the 
parameters already identified [7], can be also used in 
biomass production processes (independent of hydrogen 
production conditions). 

Because light is a limiting factor in the model formulation 
must be introduced the coupling between a radiative 
model [14] and a Haldane one to represent light-
dependent photosynthetic growth kinetics [15]. The light 
transfer inside the culture – irradiance G – is dependent of 
the photobioreactor geometry. The torus-shaped 
photobioreactor [14], [15] under study (Fig. 1) enables the 
one-dimensional hypothesis to be applied – light 
attenuation occurring in only one direction namely the 
depth of culture z which is perpendicular to the 
illuminated surface.  

The two-flux model can then be used and the following 
formulation of irradiance (Eq.1) distribution can be 
employed as follows:  
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where ( )saa bEEEX 2+=δ  is the two-flux extinction 

coefficient, and ( ) ( )saa bEEE 2/ +=α  is the linear 
scattering modulus. Ea and Es are the mass absorption and 
the mass scattering coefficients (m2·kg-1), and b is the 
backward scattering fraction (dimensionless). q0 
represents the hemispherical incident light flux. X 
represents the biomass concentration inside the 
photobioreactor (kg·m-3) and L represents the depth of the 
photobioreactor (m). 

Light dependency is represented by a photosynthetic 
growth model with an inhibitory term [16] to characterize 
the small decrease of growth rate that can be observed for 
high irradiance (photoinhibition): 
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where KI is the half-saturation constant and KII the 
inhibition constant. 

The specific growth rate expressed in this form (Eq.2) 
enable us to determine the local photosynthetic response 



 
 

     

 

( )( )zGGμ . However in our simulation there was used the 

average photosynthetic response Gμ  calculated all over 
the reactor’s volume, obtained by integrating local 
photosynthetic responses (Eq.3). 
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The mass balance equation (Eq.4) was used to illustrate 
the evolution of biomass concentration X(t): 

DXr
dt

dX
X −=     (4) 

In this equation D (h-1) is the dilution rate and Xr  is the 
volumetric rate which is detailed in [7]. 

The connection between biomass and sulfur 
concentrations (sulfur limitation representing the protocol 
for biohydrogen production) is given by f(Q) function 
which represents the intracellular sulfur quota Q influence 
on the photosynthetic activity. It is inserted as a factor in 
volumetric rate Xr , which can take values from 0 to 1. 
In the case of non-limiting intracellular sulfur quota, the 
specific growth rate is only related to light limitation – 
f(Q) = 1. 

In the following section which regards the control of the 
photosynthetic growth process the sulfur substrate was 
considered unlimited and uninhibitory, therefore it does 
not influences the biomass concentration. 

3. CONTROLLER DESIGN AND TEST IN 
SIMULATION 

The biomass concentration is one of the most important 
variables, which needs to be controlled although it is the 
desired output or not. The biomass concentration values 
can be acquired through sampling or on-line 
measurements based on principles like cytometry or 
optical density. Currently, the most used on-line 
measurement of the biomass is the turbidity which 
represents a cheap and fast solution. However, the 
turbidity sensors need to be periodically calibrated and 
often cleaned in place. The turbidity is a non-
discriminative measurement which includes all suspended 
solids, and aggregate formation can induce erroneous 
measurements.  

Classical manners to control the biomass production in 
continuous photobioreactor are the turbidostat and the 
chemostat. In these cases the biomass X or the substrate S 
are kept constant through control variables such as the 
dilution rate (D) or/and the incident light flux (q0) – to 
optimize the production system and to avoid the 
photoinhibition in early growth phases (Fig. 2). 

 
Fig. 2. General control structure of the micro-algae 
growth process 

 

The control algorithms designed in this work considered 
only dilution rate D as control variable while the incident 
light flux was kept to a constant value.  

Before choosing a proper solution for a controller, the 
biological system was linearized around a stationary 
steady state (nominal operating point). Having as target 
the control of the biomass X(t) through a command on the 
dilution D, it was determined the optimal dilution (Do) 
which corresponds to the maximal performance. The 
performance of the system was determined by computing 
the performance index I (Eq.5) which represents the total 
amount of biomass obtained at the output of the 
photobioreactor after a given period of time t. 
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where V is the photobioreactor volume (1L) and F is the 
flow rate (L/h). 

Fig. 3 shows the variation of the total amount of biomass 
produced after 5 days of cultivation in accordance with 
the dilution rate. The biomass amount (expressed in 
grams) was determined at four different values of the 
incident light flux (q0): 110, 350, 650 and 1100 µmol 
photon·m2·s.  

 
Fig. 3. The performance index variation at different light 
intensities 

 

As it can be seen in Fig. 3 the optimal dilution takes 
values between 0.05 and 0.07 h-1, on the given incident 
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light flux interval. For further linearization there were 
considered the following nominal values: q0=110 µmol 
photon·m2·s involving Do = 0.07 h-1. Considering the 
proposed values, the steady state value of the biomass was 
determined and the linearization was made around that 
point. The steady state value of the biomass was 
determined as being 0.18 g/L.  

To linearize the system, the mass balance equation of the 
biomass was reconstructed in Simulink®. The 
linearization was made using the linmod function of 
Matlab® ver. 7.9 which returned the following transfer 
function (Eq. 6): 
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Because the transfer function denominator is a first degree 
equation the most suitable controller for this case is a PI 
(proportional-integral) one. 

3.1. The PI control of the biomass growth process 

Having a stable system (negative root of the denominator) 
and a linear transfer function the first step was to 
synthesize the control architecture of the system (Fig. 4). 

 
Fig. 4. The PI control structure for the biomass growth 
process 
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where KP is the proportional gain and Ti is the integral 
time setting of the controller. 

The values of the coefficients were determined through 
graphical tuning. 

The next step implied was to implement the linear 
controller into the nonlinear model and for this the 
following control (Eq. 8) was used: 
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e(t) represents the error: biomass measured value 
subtracted from the setpoint. 

Even if the controller is initialized with steady state 
values and the optimal dilution is inherent, its addition in 
the control variable formulation has an overshoot limiting 
effect of the integral term (Fig. 5). Besides, an anti-
windup structure implemented on the nonlinear model 

had a further intense reducing effect of the overshoot (Fig. 
5). 

 
Fig. 5. The cumulated effect of the anti-windup structure 
and Do (for KP = 1 and Ti = 0.5) 

 

It is well known that the shorter the integral time (Ti) is, 
the more often the proportional correction is repeated, and 
thus the integral contribution is more effective. If the 
system allows a higher integral time (Ti), the integral 
contribution will be more limited and the controller will 
“hit” faster and more accurately the setpoint. In Fig. 6 
there are rendered the evolution of the biomass 
concentration and the control variable profile. The 
setpoint was chosen in the vicinity of the steady state (0.2 
g/L). 

 
Fig. 6. Biomass concentration in a PI controlled system 
(KP = 1, Ti = 5) and the control variable of the system 

 

In fig. 6 one can observe that the biomass reaches the 
setpoint value in less than 1 day with no overshoot, and 
chimes with the technological reality. The control variable 
is a smooth one which stabilizes at a steady value, namely 
the optimal dilution Do. 

The system must also have the ability to track different 
setpoints. Fig. 7 illustrates the biomass evolution (at 
setpoints other that the steady state one) and the control 
variable (dilution rate) in constant light flux (110 µmol 
photon·m2·s). The simulation was realized for a 20 days 
period conferring 5 days for every chosen setpoint: 0.2 
g/L, 0.35 g/L, 0.5 g/L and back to 0.2 g/L.  

As it can be observed in Fig. 7 the biomass reaches the 
desired setpoint after more than 2 days which is 
considered to be a very slow response. 

1

1 - biomass concentration with Do and anti-windup effect 
2 - biomass concentration with Do term in control 
3 - biomass concentration without Do and anti-windup 

2

3



 
 

     

 

 
 Fig. 7. Biomass concentration at different setpoints (KP = 
1, Ti = 1) and dilution rate needed to reach the setpoint 

 

Another important variable of the system is the incident 
light flux whose variation substantially influences the 
biomass concentration. Hereinafter (Fig. 8) a variable 
incident light flux was imposed, the simulation being 
made for the same period of 20 days. On the first three 
days the photosynthetic growth deployed at 110 µmol 
photon·m2·s, on the next 5 days the light flux was raised at 
250 µmol photon·m2·s, after another 5 days heightened at 
350 µmol photon·m2·s and on the last 8 days dropped 
back to 110 µmol photon·m2·s. 

 
Fig. 8. Biomass concentration at different incident light 
fluxes (KP = 1, Ti = 1) – solid line, dilution rate for 
tracking the setpoint – dotted line and setpoint – thin 
dotted line 

 

As it can be observed in Fig. 8 the controller reaches the 
setpoint (0.4 g/L) after more than 2 days, imposing an 
error of over 10%. 

3.2. The Linearizing control of the biomass growth 
process 

A more accurate method to track the setpoint of a 
biological system is the linearizing control which gives 
withal a faster response.  

As it is well known, the linearizing control is a non-linear 
one designed to achieve a linear closed loop which is 
unconditionally stable no matter the operating point [17]. 

Let us consider the general model (Eq.9) of a 
biotechnological process: 

QFDK
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d
−+−= ξξϕ

ξ
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with ξ - state vector (dim(ξ)=N), ϕ  - reaction rate vector 
(dim(ϕ)=M), F – flow rate and Q – gaseous product. The 
objective is to control a scalar output, y, which is a linear 
combination of state variables (Eq.10) that can be 
measured in the process. 
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Any of the dilution rate D or the flow rate F can be 
considered as control inputs denoted by u. The control 
objective of the system is to track a reference signal y*(t). 
The principle of the linearizing control is to design a 
control law which is a multivariable nonlinear function of 
ξ, y*, F and Q so that the tracking error is given by a 
prespecified stable linear model (reference model). 

The linearizing control design procedure consists in three 
steps, as follows: 

1. Establishing a model for variable y (a δth order 
differential equation – where δ is called relative 
degree). 
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2. Selecting a stable linear reference model of the 
tracking error (Eq.12): 
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The coefficients λδ-k are chosen so that the 
differential equation (Eq.11) to be stable. 

3. Calculus of the control law u(t) so that the I/O model 
(Eq.11) exactly matches the reference model 
(Eq.12): 
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In the case of the microalgae photosynthetic growth 
process the model order can be considered equal to 1 (the 
nutrient concentration is considered unlimited), this 
means that the relative degree δ is also equal to 1. The 
structure of the linearizing control system is represented 
in Fig. 9. 

setpoint 

q0=110 q0=250 q0=350 q0=110 



 
 

     

 

 
Fig. 9. Linearizing control structure for the biomass 
growth process 

 

The following linearizing control was determined (Eq.13) 
according to the rules presented above (the dimensionless 
coefficient λ1 was chose so that the system reaches the 
maximal specific growth rate): 

X

er
D x

⋅

⋅−
=

24
1λ

     (13) 

 
Fig. 10. Biomass concentration in a linearizing control 
system and the control variable of the system (λ1=5) 

 
Fig. 11. Biomass concentration at different setpoints and 
dilution rate needed to reach the setpoint (λ1=5) 

 

Fig. 12. Biomass concentration at different incident light 
fluxes – solid line, dilution rate for tracking the setpoint – 
dotted line and setpoint – thin dotted line (λ1=5) 

 

The simulation was made in the exact same conditions as 
the ones imposed for the linear PI controller. 

In Fig. 10 it can be observed that the setpoint is accurately 
tracked by the nonlinear control, the system stabilizing 
itself at the same optimal dilution as the PI controller. 
However these details will be later validated in practice. 
The real difference between the two control laws can be 
observed in Fig. 11 and 12. The nonlinear control is not 
designed around a steady state value and, as a 
consequence, it can work better at various setpoints 
giving a faster and better response for a similar control 
variable. Moreover, the results for incident light flux 
variations are far better than the ones obtained with the PI 
controller in the same conditions. 

4. CONCLUSIONS 

The linear PI controller gives satisfactory results in what 
regards the photosynthetic growth process, but the 
disadvantage is that it only works well around the steady 
state for which it was tuned. The results could be 
improved by designing a nonlinear PI controller able to 
adapt itself at a wider range of setpoints and light 
intensities. 

Instead the linearizing control gives better results, being 
independent of a steady state value and easy to adjust, but 
it is more complex and requires a validated model and 
knowledge on the specific growth rate (µ). Its 
implementation compels the use of a process computer, 
whereas the PI structure is easier to implement on 
industrial scale. 

The further objective is to validate both control laws on 
laboratory scale. Additional work will be done on the 
nonlinear linearizing controller implementation which 
will be coupled with a software sensor that gives the on-
line estimation of the specific growth rate from gas 
measurement (O2, CO2). 
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