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Abstract: The paper suggests a customized evolutionary identification tool for the automatic 
generation of complex nonlinear systems’ models. The proposed algorithm features a novel 
regressor encapsulation mechanism, based on fuzzy logic, aimed at guiding crossover cut point 
selection. To encourage the production of well adapted offspring, a fuzzy controller identifies the 
model terms which would bring the most relevant gain in fitness, if swapped via crossover. The 
authors contrast two methods of tuning the fuzzy membership functions’ parameters, both in a 
static and a dynamic way, in order to accurately capture regressor relevance. In addition, the basic 
multiobjective evolutionary loop is upgraded with original similarity analysis and genetic material 
refreshment mechanisms aimed at preserving population diversity. The practical usefulness of the 
proposed tool is demonstrated within an experimental trial involving the identification of a 
complex nonlinear industrial system within the Sugar Factory of Lublin, Poland. 
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fuzzy logic. 

 

1. INTRODUCTION 

Obtaining accurate and parsimonious mathematical 
models for nonlinear systems is a key step to take in all 
automatic control applications, as an appropriate closed 
loop control law is difficult to determine otherwise. The 
most straightforward form a nonlinear model may be 
generated in is a polynomial equation, as it is fairly 
simple and easily exploited by numerical algorithms. In 
addition, it has been rigorously demonstrated that any 
continuous bounded function can be approximated by a 
polynomial model, to any desired degree of accuracy 
(Young, 2006), therefore extensive research has been 
conducted concerning Nonlinear Linear in Parameter 
(NLP) models. 

In short, NLP representations are linear combinations of 
nonlinear atoms called regressors. When given access to a 
representative set of experimental data, it is easy to 
include all possible combinations of regressors in a 
maximal model. The redundant terms will afterwards be 
eliminated via pruning techniques which are usually time 
consuming and may take up significant computational 
memory resources (Wey et al, 2004). Another possible 
approach is to incrementally build an NLP model by 
gradually adding regressors as result of blind search or 
other deterministic methods that will most likely provide 
a solution only after prolonged runtime (Nelles, 2001).  

A feasible alternative to this line of research is 
represented by evolutionary techniques, namely Genetic 
Programming (GP). In the context of this approach, 
several potential models are generated across the search 
space in the form of tree encrypted individuals (Koza, 

1992) which are subsequently evolved according to the 
Darwinian principle of the survival of the fittest. In 
consequence, GP based identification tools are robust, as 
they feature no derivatives and work on populations of 
candidate solutions, instead of singular individuals (Koza, 
1992). Another useful feature is their ability to cope with 
scarce a priori information, as they can work with any 
type of search space landscape (Back et al, 2000). As far 
as initial algorithm configuring is concerned, most 
internal working parameters only require “trial and error” 
tuning at no significant supplementary computational 
costs (Back et al, 2000). All these facts make the GP 
approach suitable for cases where the shape and 
dimension of the final solution are not known beforehand, 
where there are unexpected relations between variables, 
otherwise difficult to capture, or where other analytical 
methods impose unrealistic working hypothesis (Poli et 
al, 2008). 

Within the evolutionary framework described above, the 
authors suggest a novel identification tool enhanced to 
address the specific requirements of Multi Objective 
Optimization (MOO). Therefore, diversity preservation is 
encouraged by means of similarity analysis and fresh 
genetic material injection (Patelli and Ferariu, 2010), 
whereas the main contribution of the paper resides in the 
use of adaptive, fuzzy controlled encapsulation to guide 
the crossover operator in effectively selecting the 
regressors to be swapped. After identifying similar terms 
featured by several trees in the current population, the 
proposed procedure assigns an encapsulation probability 
to each of them according to a set of fuzzy rules. The 
employed membership functions may be configured 
statically or dynamically, for a more accurate regressor 



 
 

     

 

adaptation assessment. This is meant to encourage the 
production of fitter offspring in relation to their parents, 
thus speeding up the search process and reducing the 
overall runtime. Additionally, the authors propose a 
memetic approach, residing in the symbiosis between 
structure selection via genetic operators and parameter 
computation by means of a deterministic local 
optimization plug-in based on QR decomposition. The 
reason behind this is that parameter wise linearity invites 
the use of a deterministic procedure for fast and accurate 
coefficient determination. Another advantage of this 
hybridization is the fact that structure selection and 
parameter computation are carried out in an 
interdependent manner, whilst other non-evolutionary 
identification procedures perform the two tasks 
independently. 

The paper initially browses through the most significant 
related work in the field. Section III describes the tree 
generation and evaluation mechanisms, whilst the 
following section details the enhanced genetic operators 
involved in offspring production. Section V summarizes 
the elite specific enhancements implemented by the 
authors. A representative experimental trial and a set of 
conclusions are included in the final two sections, 
respectively. 

2. RELATED WORK 

Early attempts of generating nonlinear models by 
evolving NLP compliant tree individuals employed a 
single optimization objective, accuracy, thus output only 
one system model (Flemming and Purshouse, 2002). 
Following in that trend, a transformation mechanism 
designed to assure parameter wise linearity for all 
involved trees was introduced (Madar et al, 2005). 
According to it, the ill positioned operator nodes featured 
by the randomly generated individuals would be 
identified and replaced by appropriate alleles. Although 
rapid and easy to implement, the procedure increases the 
risk of regressor bloat with a negative influence on model 
parsimony. In exchange, the authors suggest a different 
idea that promotes an even distribution of the trees in the 
initial population over the search space, and afterwards 
employs a transformation routine that guarantees 
mathematical equivalence with two immediate 
advantages: the preservation of the initial problem domain 
coverage and controlling regressor size. 

As the area of automatic control imposes specific 
requirements in model quality assessment, an appropriate 
individuals’ evaluation should be subject to multiple 
optimization criteria. Selecting the number and nature of 
the objectives to use is a delicate decision. Some 
researches employ an increased number of evaluation 
functions in the quest for a highly accurate tree 
assessment (Rodriguez-Vasquez et al, 2004). The main 
downside is that excessively harsh evaluation may 
prematurely exclude trees from the population, draining 
the pool of genetic material subject to the action of 
genetic operators. Balancing the importance of each 
objective is also difficult. Therefore the approach 

presented in this paper resorts to two assessment criteria: 
accuracy and parsimony. 

After settling for the appropriate optimization objectives 
to use, the next step is combining all the evaluation 
related information into a single value, called fitness, later 
on used to select trees for the reproduction pool. To 
manage that, especially when dealing with conflicting 
objectives, Deb suggested assigning fitness via non-
dominance analysis (Deb, 2001). The authors have 
proposed population clustering and adaptive migration as 
enhancements to Deb’s approach to better suit the 
engineering related requirements of the identification 
problem (Ferariu and Patelli, 2009). Nondominated 
sorting, in Deb’s view, is carried out in the objectives 
space which is easier to exploit than the decision space 
composed of individuals of various sizes (each individual 
features a different number of parameters). However, the 
literature contains references that employ neural networks 
to map the objectives space onto the search one (Adra et 
al, 2009). Furthermore, techniques have been documented 
that direct the search to specific areas of the objectives 
space, called Pareto knees, by dynamically aggregating 
the initial objective functions into new ones, adapted to 
the interest regions (Rachmawati and Srinivasan, 2009). 

To speed up the search process, increasing selection 
pressure has been suggested, by storing external archives 
of elite individuals copies, used for fitness computation 
purposes only (Coello Coello et al, 2007). Other efforts 
aimed at limiting algorithm runtime involve hybridizing 
the evolutionary loop with deterministic procedures, like 
the Orthogonally Least Square (OLS) tool that computes 
error ratios for each regressor to determine the least 
significant ones and eliminate them (Madar et al, 2005). 
To avoid the risk of premature model term elimination, 
brought on by the above procedure, the authors evaluate 
regressor relevance by means of a stochastic 
encapsulation procedure overlooked by an adaptive fuzzy 
controller, as detailed in paragraph IV. 

3. GENERATION, TRANSFORMATION AND 
EVALUATION OF TREES 

A healthy evolution depends on the distribution of the 
initial genetic material over the search space. In response 
to that requirement, the authors suggest an upgrade of the 
classic tree generation routine based on random recursive 
insertion of nodes. The enhancement refers to a set of 
rules that mainly consist in including each available 
terminal (1) only once in each chromosome, in assuming 
a slightly higher probability for terminals insertion than 
the one of operator nodes, and in filling empty leaf slots 
with constants (Ferariu and Patelli, 2009). The result is 
the generation of individuals rich in non-redundant 
genetic material, evenly distributed across the problem 
domain, and encrypted by well balanced trees. 

Due to the organization of the terminal set x, which 
contains lagged input ui and output yi values, nu and ny 
being the maximum allowed lags, the dynamic nature of 
the working models is implicitly guaranteed. 
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That reason, combined with the parameter wise linearity 
of NLP models leads to a minimally sufficient operator 
set O = {+, *}. The mandatory closure and sufficiency 
properties (Back et al, 2000) of sets x and O are further 
exploited by the three rule tree building algorithm for 
providing the search process with a good start. 

Given the layout of the NLP formalism, compliant models 
can be described by the following matrix equation: 
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where F is the regression matrix, c is the parameter 
vector, yi denotes the ith plant output and p stands for the 
training data set length. The suggested tree generation 
algorithm does not guarantee NLP compliance, so, in 
order to be able to attach an equation like (2) to each 
chromosome, a transformation procedure is necessary. To 
reposition the ill placed “+” operators inside the trees, 
while preserving mathematical equivalence with the 
original individuals, the nodes are reconfigured according 
to an elementary arithmetic identity, 

cabacba ⋅+⋅=+⋅ )( . This additional tree processing 
effort is directed towards facilitating the symbiosis with 
the deterministic QR local optimization procedure that 
can easily solve (2) and determine the optimal set of 
parameters for each tree encrypted structure.  

Once their structure and parameters have been 
established, the trees in the initial population are ready for 
evaluation, via the two following objective functions: 
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The Squared Error Function (SEF) measures tree 
accuracy, whilst the Complexity Function (CF) is in 
charge of evaluating chromosome parsimony. Information 
about the total number of regressors, r, the terminals 
included in those regressors, relative to the number of 
available ones, t, as well as parameter relevance is 
reflected, in that order, by the three terms of the 
complexity criterion that the present approach employs. 
The last two components of CF are meant to penalize 
candidate models that contain a low number of large 
regressors as well as the ones featuring insignificant 
parameters, as neither have any practical significance. 

Even though model parsimony is encouraged by other 
inherent components of the evolutionary algorithm (tree 
generations, enhanced genetic operators), considering a 
separate complexity objective is preferred, as the 
algorithm can output a whole set of nondominated 
solutions from which the designer can afterwards choose 
one or several tradeoff models, depending on the 
identification application’s specific. However, not all 
solutions from the Pareto front are of practical use. The 
models situated on the extremes are either inaccurate or 
overfitted, with unsatisfactory generalization capacities. 
To avoid those areas and focus tree generation on the 
central Pareto front area, the authors suggest clustering 
procedures that target both regular trees (Ferariu and 
Patelli, 2009) and elites (section V). 

4. ADAPTIVE FUZZY ENCAPSULATION AND 
ENHANCED GENETIC OPERATORS 

Towards the end of the evolutionary loop, the trees are 
expected to get closer to the optimal Pareto front. In 
consequence, it is highly probable for most of them to 
feature similar regressors that have survived over 
generations as well adapted model terms, which 
significantly contribute to increasing overall tree 
performances. Therefore they should be protected from 
division by crossover, so that offspring individuals should 
also benefit from them. Allowing well adapted model 
terms to pass on to future generations is called 
exploitation. On the other hand, population diversity must 
also be encouraged, as the search process should explore 
new areas of the problem domain by generating children 
trees which are better than their parents and significantly 
different at the same time. To do so, the authors suggest 
an original crossover operator designed to identify and 
avoid similar regressors, while selecting the remaining, 
non-resembling model terms instead. They are the ones to 
be swapped in an effort to generate better, yet diverse 
offspring, thus balancing between exploitation and 
exploration. 

In practice, the first step to take is determining which 
similar regressors are truly well adapted model terms. The 
proposal is to employ a set of fuzzy rules. The trees in the 
current population are processed and all regressor 
featured by at least two individuals will be encapsulated 
with a probability that reflects how well adapted they 
truly are. Five fuzzy sets are used to that end. The first 
three are related to the fuzzy variable var(SEF) which 
stands for the variance of the SEF values (3) associated to 
all trees that feature the current regressor being 
encapsulated. They are labeled low, medium and high 
(Fig. 1). The remaining fuzzy sets are defined in relation 
to the size of the targeted regressor, size(REG), which can 
either be acceptable (fuzzy set is labeled ok) or not (fuzzy 
set is labeled large). The Membership Functions (MF) 
associated to the two fuzzy variables and the five fuzzy 
sets are shown in Fig. 1. 

For a complete definition of the membership functions, 
the values for the trapezes’ vertices, vi, i = 1, .., 6, must be 
accurately selected. The static configuration suggested by 



 
 

     

 

the authors considers a uniform distribution of the vi 
parameters. Therefore, v1  = 1/8m, v2  = 1/6m, v3  = 1/4m, 
v4  = 1/2m, where m denoted the mean SEF  values 
achieved by the individuals in the early generations of the 
algorithm. The size(REG) related membership function 
parameters are v5  = m and v6  = 2m, where m has the 
same significance as above, only in relation to the mean 
CF values. To improve the accuracy of the vi, i = 1, .., 6 
tuning process, the authors introduce a dynamic 
configuration as result of a separate learning process 
detailed later on in this section. 

 

v1 v2 v3 v4 var(SEF) 

smallMF mediumMF highMF 

    v5    v6 size(REG)

okMF largeMF 

   
a.     b. 

Fig. 1. Fuzzy sets and membership functions 

IF var(SEF) IS small AND size(REG) IS ok THEN P[enc] = 1 
IF var(SEF) IS medium AND size(REG) IS ok THEN P[enc] = 0.8 
IF var(SEF) IS high AND size(REG) IS ok THEN P[enc] = 0 
IF var(SEF) IS small AND size(REG) IS large THEN P[enc] = 0.9 
IF var(SEF) IS medium AND size(REG) IS large THEN P[enc] = 0.5 
IF var(SEF) IS high AND size(REG) IS large THEN P[enc] = 0 

Fig. 2. Fuzzy rules 
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Fig. 3. Parents featuring one identical regressor 

The encapsulation probability to be attached to the current 
similar regressors is computed by means of the fuzzy 
rules indicated in Fig. 2. To better understand the 
encapsulation process and the way it guides the crossover 
operator in selecting swap regressors, let us consider the 
example presented in Fig. 3. The two parents selected by 
crossover feature one identical regressor marked by a 
triangle (Fig. 3). Let us assume that, for all trees in the 
current population that feature the exact same regressor as 
the one inside the triangles, var(SEF) results small and 
that size(REG) is rather large. In that case, the fourth  
fuzzy rule  (Fig. 2) is activated and the regressor is 
encapsulated with an encapsulation probability of 0.9 in 
all the trees that contain it, including the two parents 
presented in Fig. 3. The probability of selecting a cut 
point node within the identical regressor is 1 minus the 
encapsulation probability, which, for this example, is 
evaluated to 0.1. In other words, it is highly unlikely for 
crossover to divide this particular regressor, as the fuzzy 
control algorithm has found it useful. This example is 
meant to illustrate the opposing nature of encapsulation 
on the one hand and crossover on the other. The former is 
protective, meant to encourage exploitation, whilst the 
latter is dividing, aimed at favoring exploration. 

As mentioned before, the encapsulation procedure is 
useful only in the final stages of the evolution process. In 
early generations, similar regressors are mostly 
coincidental and cannot be interpreted as a sign of tree 
adaptation. Note that, in the initial population, each tree 
includes all available terminals, however, the resulting 
similar regressors offer no indication as to adaptation. 
That is why encapsulation is applied only in the final 
max_gen_no/10 generations (max_gen_no stand for the 
maximum number of generations that the algorithm is 
allowed to run for). The dynamic tuning of the thresholds 
in Fig.1 considers that the initial generations represent a 
"training period", used to configure the parameters of the 
MF, vi, i = 1, .., 6 (Fig. 1), by storing the variance of SEF 
values and the one of CF values for each population, in 
the vectors var(SEF) and var(CF). When the 
max_gen_no/10 threshold is reached, the mean value for 
each of the two vectors is computed and the parameters vi, 
i = 1, .., 6 are evenly distributed as follows: 
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The other genetic operator, mutation is enhanced to avoid 
compensation (Ferariu and Patelli, 2009). Thus, both 
crossover and mutation, customized by the authors in the 
manner described above, have a double role: controlling 
tree complexity, as well as encouraging the generation of 
fitter offspring. The additional tree processing performed 
by the upgraded genetic operators is in fact 
computationally cheaper than generating poorly adapted 
children, a genuine risk when working with raw versions 
of the evolutionary tools. 

5.  ELITE RELATED UPGRADES 

To increase algorithm search speed, the authors suggest 
an elitist approach upgraded by several original 
enhancements meant to focus tree generation on the 
feasible area of the Pareto front (denoted group I in Fig. 
4) and to encourage diversity within each population. At 
each generation, copies of the nondominated trees are 
stored in an external archive and used as reference in 
computing fitness values for the dominated individuals 
(Patelli, 2010). Once a new nondominated set has been 
inserted in the archive, also called elite set, the latter is 
updated by eliminating the eventual dominated trees. 
However, a snapshot of the global elite set at each 
generation, after the update stage, is stored for later use. 
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Fig. 4. Global elite set clustered to highlight feasible 
solutions 



 
 

     

 

The feasible region of the Pareto front contains candidate 
models of practical significance (group I in Fig. 4). In 
order to identify it, the average performances of the 
population are computed relative to each objective (Patelli 
and Ferariu, 2010), thus partitioning the elite set in two 
groups. The individuals within the first, namely elites 2, 3 
and 4 in Fig. 4, are allowed to generate offspring of their 
own, separately from the trees in the regular population. 
The resulting children are then injected among the 
common individuals, to draw the trees closer to the 
interest area of the Pareto front. 

Note, however, that elites are merely copies of 
nondominated individuals and there is a good chance that 
some of the originals still exist and produce offspring in 
the general population, although that is not a certainty. 
Ergo, some of the elite children being injected might 
resemble already existing trees. To prevent the insertion 
of redundant genetic material, the authors have 
implemented a similarity analysis based on SEF variance, 
to validate elite children inclusion in the common 
population (Patelli and Ferariu, 2010). If, in spite of that 
precaution, overall diversity drops under a certain level, 
the current genetic pool is refreshed by including one of 
the elite set snapshots from a previous generation, 
determined dynamically in accordance with the 
magnitude of diversity decrease (Patelli and Ferariu, 
2010). 

6. APPLICATION 

The described multiobjective, elitist, GP based tool, 
featuring Similarity Analysis and Dynamic fuzzy 
Encapsulation (SADE) was employed to identify a 
complex industrial nonlinear system, namely the steam 
subsection of the evaporation station within the sugar 
factory of Lublin, Poland. The targeted system features 
one input (steam temperature) and one output (steam 
pressure) and has no available mathematical model. The 
SADE algorithm was run for five times, each considering 
a different size of the initial population. A reference MOO 
approach (RMOO), featuring none of the suggested 
upgrades was also run under the same initial conditions, 
for the sake of comparison. The results, obtained on a 190 
data point training set and validated on a 290 entry set, are 
shown in Table 1. 

Table 1.  RMOO and SADE performances 
RMOO SADE 

run ind_ 
no 

ge
n elite_no var 

(SEF) 
mean 
(reg) ge

n elite_no var 
(SEF)

mean 
(reg)

R1 20 75 5 0.820 5 23 18 0.623 7 
R2 75 100 7 1.003 12 55 23 0.429 9 
R3 150 100 12 7.115 7 72 34 0.515 6 
R4 300 100 15 21.31 35 63 29 0.329 8 
R5 570 100 13 105.7 41 71 31 0.418 9 

ind_no - initial population size (number of trees); 
gen - number of generations in which the final elite set is output; 
var(SEF) - SEF variance for the final elite set, computed on the 

validation data; 
mean(reg) - average number of regressors in the trees in the final 

elite set. 

Table 2.  RMOO and SADE performances 
static vi dynamic vi gen reg(0) reg(1) var (SEF) reg(0) reg(1) var (SEF)

60 7 5 0.920 13 12 0.725 
65 12 3 0.325 5 9 0.255 
70 13 7 0.213 3 19 0.203 

gen - current generation 
reg(0) - number of regressor with encapsulation probability 0 
reg(1) - number of regressor with encapsulation probability 1 
var(SEF) - SEF variance 

As the number of trees in the initial population increases, 
the RMOO algorithm finds it difficult to handle the 
excess genetic material and cannot complete the evolution 
process (R2 R5 exit by reaching the maximum number 
of generations). The number of elite individuals on the 
final non-dominated fronts seems to increase when the 
size of the initial population is greater, which is not a 
desired behavior, as the identification problem remains 
the same, and should have resembling solutions, 
regardless of algorithm configuration. In addition, elite 
accuracy and complexity values are scattered over the 
objectives space, even in the regions of no practical 
relevance, as shown by the high values of the variance 
and average indicators. On the other hand, the SADE 
alternative manages to meet the accuracy termination 
criterion before the maximum number of generations 
expires, due to its elitist nature and the preservation of 
well adapted regressors via encapsulation. Due to the 
diversity conservation enhancements, the elites in the 
final set are much more evenly distributed than in the case 
of RMOO, as indicated by the low SEF variance values. 
Complexity is quasi constant on all runs, as a positive side 
effect of the two enhanced genetic operators. 

To illustrate the contribution of the dynamically 
computed MF parameters, the SADE algorithm was 
compared against a similar version with the sole 
difference that the latter used static vi values (Table II). 
When static MF parameters are used, there seems to be no 
dependency between the number of regressors considered 
to be well adapted, reg(1), and the evolution of SEF 
variance, which is an indicator of a high miss rate 
throughout the encapsulation process. The SADE version 
does better. As var(SEF) drops, which illustrates the 
generation of more accurate populations, ergo an increase 
in well adapted terms occurrence, the number of 0 labeled 
regressors also decreases, while the 1 labeled ones 
become more frequent. 

The final nondominated sets generated by the RMOO and 
SADE algorithms, as result of a separate experiment that 
targeted the steam subsection described above, are 
presented in Fig. 5a. Fig. 5b depicts the generalization 
capacities of the most accurate elite situated on the SADE 
generated Pareto front. The considered size of the initial 
population is 150 individuals, and the maximum allowed 
number of generations is 250. The raw tool, featuring 



 
 

     

 

none of the suggested enhancements, has produced 
tradeoff solutions throughout the entire span of the Pareto 
front, including the nonfeasible extremities. The 
generated models are clustered, leaving parts of the 
interest zone uncovered. The SADE alternative offers a 
much better distributed set of solutions, located only in 
the feasible region of the Pareto front. Also note that the 
proposed identification tool provides the tradeoff set in 
less than half the run time of the RMOO, measured in 
generations, thus illustrating the practical benefits of the 
implemented upgrades. 
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Fig 5a. RMOO and SADE generated Pareto fronts 
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Fig 5b. Validation set performances of a SADE generated 
model 

7. CONCLUSION 

The nonlinear systems identification tool suggested in this 
paper is based on an elitist, multiobjective GP algorithm, 
enhanced with a fuzzy controlled dynamic encapsulation 
procedure and similarity analysis. The implemented 
upgrades are aimed at controlling model complexity, 
whilst balancing exploration and exploitation tendencies. 

The protection of well adapted nonlinear terms is 
achieved by evaluating regressor usefulness via a fuzzy 
controller. As far as regressor adaptation assessment is 
concerned, the superiority of dynamically tuning 
membership functions parameters is outlined by 

comparison against a static approach. The resulting 
encapsulation probabilities are attached as labels to each 
of the targeted regressors and afterwards used to guide 
crossover in its search for appropriate cut nodes.  Search 
space exploration is also encouraged by means of 
discarding redundant genetic material with the help of 
similarity analysis. Solution diversity is upkept by 
refreshing the population with specifically chosen 
individuals, whenever necessary. 

As the generated solutions are compliant with the NLP 
formalism, a demonstrated universal approximator, 
formally compatible with numerical applications, the 
suggested algorithm is a valid approach for nonlinear 
model generation, in the framework of automatic control 
problems. The QR hybridization, as well as the featured 
upgrades targeted at increasing search speed and reducing 
computational resource consumption, recommends the 
proposed approach for solving complex problems with 
reduced pre-design available information and difficult 
search space landscapes. 
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