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Abstract: Most systems that are encountered in practice are subjected to various uncertainties 
such as nonlinearities, actuator faults parameter changes etc. Modeling and identification of 
electro-mechanical systems constitute an essential stage in practical control design and 
applications. For a electro-mechanical rotational system, the nonlinearities, like Coulomb friction 
and dead zone, significantly influence the system operation when the rotation changes direction. 
The paper presents the black-box nonlinear identification of a rotational flexible joint setup. The 
nonlinear model for the system is obtained based on the discrete second order nonlinear Volterra 
model. Off-line identification of the nonlinear system model is performed using the least mean 
square algorithm. Results of the real time experiments are graphically and numerically presented, 
and the advantages of the nonlinear identification approach are revealed. 
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1. INTRODUCTION 

Modelling and control problems of flexible structures 
have been extensively studied by many researchers (Luo 
1993), (Matsuno, Murachi, and Sakawa 1994). These 
problems have arisen in the area of flexible space 
structures as well as in the area of lightweight flexible 
robot arms. Identification of electro-mechanical systems 
constitutes an essential stage in practical control design 
and applications. Controllers commanding systems that 
operate at varying conditions or re-quire high precision 
operation raise the need for a nonlinear approach in 
modelling and identification. Most electro-mechanical 
systems used in industry are composed of masses moving 
under the action of position and velocity dependent 
forces. These forces exhibit nonlinear behaviour in certain 
regions of operation (Pearson and Pottmann, 2000). For 
rotational systems, the nonlinearities, like Coulomb 
friction and dead zone, significantly influence the system 
operation when the rotation changes direction. 

Growing needs for advanced and precise robot 
manipulators in space industry and mechanically flexible 
constructions result in new and complicated problems of 
modelling, identification and control of flexible 
structures, i.e. flexible beams, robot arms, etc. Dealing 
with flexible systems one is faced with inherent infinite 
dimensionality of the systems, light damping, 
nonlinearities influence of variable environment etc. One 
of the most important factors is to establish a suitable 
mathematical model of the system to make analysis as 
realistic as possible. Identification of nonlinear systems is 
of considerable interest in many engineering and science 
applications. Volterra series provide a general 

representation of nonlinear systems and have been applied 
in system identification. 

This paper deals with the black-box nonlinear 
identification of a rotational flexible link experiment. The 
real mathematical models of these systems are very 
complicated, so for control purpose simplified models are 
typically used. In general, these models are derived using 
Lagrange’s energy equations. In order to obtain useful 
models for control design, approximations of these 
models can be derived, therefore identification procedures 
are needed. 

Some nonlinear models are obtained from first principles. 
Linearization is usually only possible around a specific 
operating point. But if the nonlinear system is used over 
the entire operating range the only alternative is, 
therefore, to model the system itself as a nonlinear model 
and estimate the parameters of this model on the basis of 
the measured input/output data. Probably the best known 
class of nonlinear systems that possess moving average 
representations is the Volterra model (Boyd and Chua 
1985). Nonlinear models are frequently extracted using 
Volterra series and Wiener kernels because the model 
form does not need to be known a priori. Volterra models 
are very useful for signal and system representation due to 
their general nonlinear structure and their property of 
linearity with respect to their parameters, the kernel 
coefficients. Volterra series theory is the extension of the 
convolution integral to higher orders with the 
corresponding concepts of higher dimension impulse 
response functions and kernel transforms. For numerical 
treatment, the discrete version of the Volterra series 
expansion is more appropri-ate. In this paper one used a 
nonlinear least-mean squares (LMS) algorithm which is 
based on discrete second-order Volterra model. This 



 
 

     

 

nonlinear LMS method can be seen as an extension of the 
linear LMS algorithm. The merit of this ap-proach is that 
it keeps most of the of the linear LMS properties but still 
has a reasonably good convergence rate (Soderstrom and 
Stoica 1989). The proposed method is used to identify the 
flexible link setup. The input signal was generated by 
passing a zero-mean white Gaussian noise through a 
linear filter. First one performed a complete 
orthogonalization procedure for truncated Volterra series. 

This allows us to use the LMS adaptive linear filtering 
algorithm to calculate all the coefficients recursively.  
This paper is organized as follows. The experimental 
setup that will be identified is described in Section 2. The 
discrete second order Volterra model is derived in Section 
3. Section IV details the approach used to identify the 
nonlinear model using the least mean square algorithm. 
The experimental results are presented in Section 5 
followed by some conclusions. 

2. QUANSER ROTARY FLEXIBLE JOINT 
EXPERIMENT 

The Quanser experimental set-up contains the following 
components (Quanser Consulting Inc. 1998): Quanser 
Universal Power Module UPM 2405/1503; Quanser 
MultiQ PCI data acquisition board; Quanser – Rotary 
Flexible Joint Module; Quanser SRV02-E servo-plant; PC 
equipped with Matlab/Simulink and WinCon software. 

WinCon™ is a real-time Windows 98/NT/2000/XP 
applica-tion. It allows running code generated from a 
Simulink diagram in real-time on the same PC (also 
known as local PC) or on a remote PC. Data from the 
real-time running code may be plotted on-line in WinCon 
Scopes and model parameters may be changed on the fly 
through WinCon Control Panels as well as Simulink. The 
automatically generated real-time code constitutes a 
stand-alone controller (i.e. independent from Simulink) 
and can be saved in WinCon Projects together with its 
corresponding user-configured scopes and control panels. 

The rotary motion experiments are based on the Rotary 
Servo Plant SRV02-E. It consists of a DC servomotor 
with built in gearbox whose ratio is 70 to 1. The output of 
the gear-box drives a potentiometer and an independent 
output shaft to which a load can be attached. The flexible 
link experiment consists of a mechanical and an electrical 
subsystem. The modelling of the mechanical subsystem 
consists in describing the tip deflection and the base 
rotation dynamics. The electrical sub-system involves 
modelling of DC servomotor that dynamically relates 
voltage to torque.  

The rotary flexible joint consists of a rotary sensor 
mounted in a solid aluminium frame and is designed to 
mount to a Quanser rotary plant. The sensor shaft is 
aligned with the motor shaft. One end of a rigid link is 
mounted to the sensor shaft. The link rotation is 
counteracted by two extension springs anchored to the 
solid frame resulting in an instrumented flexible joint. 
The spring anchor points are adjustable to three locations 

to obtain various stiffness constants. Three types of 
springs are supplied with the system resulting in a total of 
9 possible stiffness values. The link is also adjustable in 
length thus allowing for variations in inertia. 

The equations of motion involving a rotary flexible joint 
imply modelling the rotational base and the flexible joint 
as rigid bodies. The major nonlinearities in the 
mechatronic systems of this kind are the Coulomb 
frictions, which are expressed as nonlinear functions of 
the rotational speeds, and the dead zone nonlinearity, 
which occurs between the overall system input and 
output. Although the Coulomb frictions are modelled as 
static nonlinear functions in our system, they introduce 
dynamic nonlinearities in the system input–output 
characteristics. This is a natural consequence of the fact 
that the static nonlinearities appear at the feedback loops 
of the two rotating masses. 

 

 
Fig. 1. Quanser flexible joint experiment 
 

System parameters are: 

Armature Inductance  Lm  0.18mH 
Armature Resistance  Rm  2.6 Ω  
Motor torque constant  Km  0.00767Nm/A 
Gear ratio  Kg  70 
Load inertia  JLOAD  0.0059Kgm2 
Inertia  JHUB 0.0021Kgm2 
(includes motor and gears) 
Spring stiffness  KSTIFF  1.61N/m 
Max applicable voltage  VMAX  5V 
 

3. SECOND-ORDER VOLTERRA MODEL 

Volterra models are very useful for signal and system 
representation due to their general nonlinear structure and 
their property of linearity with respect to their parameters, 
the kernel coefficients. However, when using Volterra 
models there are difficulties with a complexity problem 
that results from the very large number of parameters 
required by such models. Expanding the kernels on a 
generalized orthonormal basis allows to significantly 
reducing this parametric complexity.  



 
 

     

 

Nonlinear models are frequently extracted using Volterra 
series and Wiener kernels because the model form does 
not need to be known a priori. Volterra series theory is the 
extension of the convolution integral to higher orders with 
the corresponding concepts of higher dimension impulse 
response functions and kernel transforms (Glentis, 
Koukoulas and Kalouptsidis 1999). For numerical 
treatment, the discrete version of the Volterra series 
expansion is more appropriate. The aim is to obtain values 
for the Volterra kernels over the desired time ranges by 
numerical deconvolution (Kibangou, Favier and Hassani 
2003).  

In this paper one develop a nonlinear least-mean squares 
(LMS) algorithm which is based on discrete second-order 
Volterra model. This nonlinear LMS method can be seen 
as an extension of the linear LMS algorithm. The merit of 
this approach is that it keeps most of the of the linear 
LMS properties but still has a reasonably good 
convergence rate. The proposed method is tested using 
computer simulated models. The input signal was 
generated by passing a zero-mean white Gaussian noise 
through a linear filter. First one performed a complete 
orthogonalization procedure for truncated Volterra series. 
This allows us to use the LMS adaptive linear filtering 
algorithm to calculate al the coefficients recursively. The 
method has been applied to identify a flexible link setup 
and a comparison with a linearized model was performed. 

The zeroth-order Volterra model is just a constant defined 
as 

 00 )( huY t =   (1) 
where ut is the input signal and h0 is a constant. 

The first-order Volterra system is basically the same as 
the linear system. In other words, the linear system is a 
subclass of the Volterra system. Consider a general 
isolated linear system as shown in Fig. 1 where 1N

th  the 

represents the linear filter coefficients. The output 1N
ty  

can be expressed by input tu  as: 
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Fig. 2. First order linear system block diagram 

In (2) the symbol  * means linear convolution. If all the 
components in 1N

th  can be represented by some linear 
combination of orthonormal basis tb , this means that the 

first-order Volterra kernel 1N
th  in equation (1) can be 

represented by: 
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where 1N
ma  are some proper constants (Patra and 

Unbehauen 1993), (Kortmann and Unbehauen 1986). 
Note that  }0,{ ∞≤≤ mbm  is the set of orthonormal basis, 
which means: 
 mlml bb −δ=,         (4) 
where ,  denotes the inner product and δl−m is the Dirac 
delta function. Substituting equation (4) in equation (3), 
one can define the first order Volterra functional as: 
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Note that equation (4) is the first-order homogeneous 
functional, which means that Y1(cut) = cY1(ut), where c is 
a constant. Equation (4) can be expressed by the block 
diagram shown in Fig. 2.  
For the most general form of first-order Volterra system, 
one should include the DC term in equation (1), which 
can be expressed in terms of the Volterra functional Y0(ut) 
and Y1(ut) as 
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From (6), one conclude that a general first-order Volterra 
system with DC term is one for which the response to a 
linear combination of inputs is the same as the linear 
combination of the response of each individual input. 

The linear combination concept described above can be 
extended to the second-order case, which is one for which 
the response to a second-order Volterra system is a linear 
combination of the individual input signals. Consider the 
isolated second-order extension version of Fig. 3 shown 
in Fig. 4. 
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Fig. 3. First order Volterra model 
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Fig. 4. Isolated second-order Volterra model block 
diagram 



 
 

     

 

The response to the input ut in Fig. 3 is expressed by 
2N

ny : 
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where 2
2,1

N
kkh  is defined as the second-order Volterra 

kernel. As in the literature [10], [11], [12], for simplicity 
and without loss of generality, one assume the kernel to 
be symmetric, which implies that 2
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orthonormal basis set tb , then 2
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Based on the description above, the general second-order 
Volterra system can be represented in terms of Y0(ut), 
Y1(ut) and Y2(ut) which is 
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For practical implementation a truncated series expansion 
is utilized that make use of last M input values. The 
truncated second order Volterra series expansion with 
memory M is  
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4. IDENTIFICATION BASED ON VOLTERRA 
MODELS 

Nonparametric methods of nonlinear system identification 
include those system representation methods as Volterrs 
kernel or Wiener kernel. Among these methods, Volterra 
kernel model is one of the most general model, since 
Volurra kernel model is considered to be an extension of 
impulse response model of linear case to nonlinear case. 
The Volterra series representation is an extension of linear 
system theory. This extension shows the highly complex 
nature of nonlinear filtering. In the following one used for 
identification a nonlinear least-mean squares LMS 
adaptive algorithm which is based on the discrete Volterra 
model. This nonlinear LMS adaptive method can be seen 
as an extension of the linear LMS algorithm. The merit of 
this approach is that it keeps most of the linear LMS 
properties but still has a reasonably good convergence 
rate. The performance analysis is also more tractable, 
which is seldom true for most nonlinear adaptive 
algorithms. 

For identification one used an adaptive filter. Adaptive 
filters have been popular since the early 1960s after they 
were studied and developed in (Widrow and Stearns 
1985). His development is based on the theory of Wiener 
filters for optimum linear estimation. There are other 
approaches to the development of adaptive filter 

algorithms, such as Kalman filters, least squares, etc. It 
has recently been shown that there is a close relationship 
between Kalman filters and recursive least squares 
adaptive filters (Syed and Mathews 1994), (Diniz 2002). 
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Fig. 5. System identification using adaptive filter 
 
In the following, one develop the adaptive filter in the 
form of the least-mean square (LMS) algorithm. There are 
many variants of the LMS algorithm. 

Fig. 6 illustrates the requirements of an adaptive filter, 
namely: a filter structure, a filter performance measure 
and an adaptive update algorithm. The input signal is tu , 

the estimated response is F
ty , the error signal is te  and 

the real signal is P
ty . 
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Fig. 6. Adaptive filter block diagram 
 

The output of the adaptive filter F
ty  is compared with the 

plant response P
ty . The error signal generated is used to 

adapt the filter parameters to make F
ty  more closely 

approach P
ty  or equivalently to make the error te  

approach zero. The minimization of a function of the error 
signal is used for the design. The choice of the 
performance function depends on the application. There 
are a variety of possible functions, but the most popular is 
the mean-square-error (MSE) with cost function: 

 *2 || tttt eeeJ ⋅==                  (11) 

where (.)* means complex conjugate. 

The steepest gradient descent method of minimization 
requires that one update the weight vector in the negative 



 
 

     

 

direction of the steepest gradient, according to the 
following formula: 
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This means one changes the weight vector in the direction 
of the negative gradient at each location on the 
performance surface at each instance of time, t. 

For the second order Volterra model one have: 
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Linear and quadratic coefficients are updated separately 
by minimizing the instantaneous square of the error 
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where 1λ  and 2λ  are step sizes used to control speed 
convergence and ensure stability of the filter.  

Using the weight vector notation, Ht, one can combine the 
two update equations into one as the coefficient update 
equation 
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It is evident that this procedure involves increasingly 
complex kernel expressions as the order of nonlinearity 
increases, and its practical efficacy is contingent upon our 
ability to obtain accurate kernel estimates from input-
output data. 

5. EXPERIMENTAL RESULTS 

To obtain the nonlinear model of flexible joint setup, one 
considers the case of second-order Volterra filter with 
memory M=5, the output of which can be represented as 
in (10). The input signal used for identification was 
generated by passing a zero-mean white Gaussian noise 
through a linear filter. The variance of the input was 
chosen to be equal to 1. The input of the system is the 
supply voltage of DC motor and the output is the flexible 
arm deflection measured using a strain gage. The input 
and output signals used for identification are presented in 
Fig. 7 and Fig. 8. In Fig. 9 the convergence rate of a 
quadratic coefficient of Volterra kernels is presented. One 
can see that after 7000 iterations the LMS algorithm 
converge towards the solution. The simulated response of 
the identified nonlinear Volterra model to a impulse input 
of width equal to 1 sec and amplitude 2 Volts is presented 
in Fig. 9. The simulated response to the same input of a 
linearized model of the flexible joint experiment 

described in (Quanser Consulting Inc. 1998) is presented 
in Fig. 11.  
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Fig. 7. Input signal (voltage) 
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Fig. 8. Output signal (deflection) 
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Fig. 9. Quadratic coefficient evolution  
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Fig. 10. Simulated response of nonlinear Volterra model 
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Fig. 11. Simulated response of linear model 

6. CONCLUSIONS 

In this paper, a black-box nonlinear identification of a 
rotational flexible joint setup has been presented. The 
nonlinear model for the system was obtained based on the 
truncated discrete second order nonlinear Volterra model. 
For numerical treatment, the discrete version of the 
Volterra series expansion is more appropriate. In this 
paper one used a nonlinear least-mean squares (LMS) 
algorithm which is based on discrete second-order 
Volterra model. This nonlinear LMS method can be seen 
as an extension of the linear LMS algorithm. The input 
signal was generated by passing a zero-mean white 
Gaussian noise through a linear filter. Results of the real 
time experiments are graphically presented, and the 
advantages of the nonlinear identification approach are 
revealed by comparing the impulse response of the 
nonlinear model obtained by identification and the 
impulse of the linearized model around a specific 
operating point. For identification one used an adaptive 
filter in the form of the least-mean square algorithm. The 
chosen performance function was the mean-square-error.  
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