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Abstract: This paper presents a new neuro-evolutionary system for the design of feed forward 
hybrid neural models. Every individual is directly encoded as a directed acyclic graph, allowing 
the development of partially interconnected architectures with heterogeneous layers including 
both local and global neurons. The use of different neuron types provides improved performances 
in terms of approximation quality for a large class of nonlinear system identification problems, 
while the direct graph encoding ensures a simpler interpretation of the hierarchical individuals, as 
well as a compact representation. The authors recommend a special minimally sufficient set of 
functions and customized compatible genetic operators, which exploit the inherent characteristics 
of the neural architectures (modularity, high interconnectivity and high level of parallelism). An 
extra effort is made towards improving the genetic algorithms convergence speed by introducing a 
special sensitivity score for each hidden neuron as part of a novel crossover strategy aimed to 
preserve valuable structural blocks inside the individual. Featuring multithreaded execution and 
specialized data structures, the C application scales well on multi core computers and has a low 
memory footprint, being suitable for complex nonlinear identification problems. 
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1. INTRODUCTION 

The employment of genetic programming as a neuro - 
evolutionary technique represents a modern approach for 
complex nonlinear identification problems. Neuro-genetic 
systems benefit greatly from the learning ability and 
computational efficiency (due to the highly 
interconnected, parallel structure) of neural networks, 
while, on the other hand, the evolutionary component 
provides a more robust and flexible selection of the model 
structure and/or corresponding parameters, being also 
able to deal with noisy data, time-variance, nonlinearities 
and other difficulties specific to industrial environments. 
Overall, one such system offers increased flexibility for 
the simultaneous selection of model structure and 
parameters for a wide range of applications, without 
requiring a large set of aprioric information (Flemming 
and Purshouse, 2002; Ferariu and Voicu, 2005; Poli et al., 
2008).  

With these advantages in mind, numerous approaches 
have been suggested in the related literature (Flemming 
and Purshouse, 2002). In each case, the first problem that 
arises is the selection of an appropriate chromosomial 
encoding of the hierarchical neural structures. The 
standard genetic algorithm requires the use of 
supplementary “control” genes for the encryption of 
hierarchical topologies, which leads to longer 
chromosomes and to a more difficult exploration, while 
the canonical GP implicitly works on tree-based 
individuals. The most direct and compact representations 
is the graph based one, yet this is not a common 

encryption in the standard evolutionary loop. The 
extension of canonical GP to work on graph-based 
individuals requires a more complicated logic inside the 
genetic operators, as well as specific measures to ensure 
the correctness of the resulting individuals. 

This approach employs graph GP for the concomitant 
selection of neural topologies and parameters of hybrid 
neural networks (HNN). The modularity and parallelism 
of neural networks is exploited through a special 
definition of primitive sets and corresponding specific 
crossover and mutation operators that ensure that any 
recursive combination of functional and terminal nodes 
leads to valid individuals, from both a phenotypic and 
genotypic standpoint.  

This paper introduces a special guided structural 
crossover which analyzes the performances of the 
component sub-graphs before selecting the cutting points. 
This heuristics is useful for preventing the loss of the best 
adapted substructures, with benefits on the performances 
of the resulted offspring and, consequently, on the 
convergence speed of the algorithm.     

Unlike previous graph evolutionary algorithms which deal 
with a limited variety of structural templates (especially  
with MLP), the modular generation of graph-encrypted 
individuals enables the development of partially 
interconnected hybrid networks, which are expected to 
deliver increased performances for wide classes of 
applications (Flemming and Purshouse, 2002; Poli et al., 
2008). The hybrid neural networks accept combinations 
of hidden neurons with global and local responses, thus 



     

being suitable for both interpolation and extrapolation 
problems (Ferariu and Voicu, 2005). 

The paper is organized as follows. Section 2 browses the 
main features of the suggested design algorithm, whilst 
Section 3 discusses details regarding the proposed C 
implementation, with emphasis on data structure design 
and algorithms adopted for population initialization and 
offspring generation. Section 4 comments the 
applicability of the approach to chaotic time series 
prediction via several experimental trials and last section 
is devoted to conclusions. 

2. ALGORITHM OVERVIEW 

The algorithm starts with a randomly generated initial 
population of graph-based individuals, each one 
encrypting a possible hybrid neural model. The quality of 
each solution is assessed in terms of output squared error 
computed over the whole training data set and, 
subsequently, the fitness values, stated as selection 
probabilities, are determined by means of linear ranking. 
At each generation, the best individuals are selected into 
the recombination pool, by using stochastic universal 
sampling. Afterwards, specific crossovers and mutations 
are applied to produce new models, with potentially better 
performances. Note that the genetic operators act at both 
structural and parametric level. The best offspring replace 
the less adapted individuals in the population which is 
passed to the next generation. 

The suggested design algorithm is compliant with feed-
forward, partially interconnected HNN with external 
delay blocks. A neuron may receive input stimuli from 
any subset of neurons of the previous layer, as well as 
from any subset of the neural inputs. To provide enhanced 
adaption capabilities in interpolation and extrapolation 
problems, the hidden layers can comprise of any 
combination of neural units with local or global response. 
Note that the neurons with global response are able to 
bring increased generalization capabilities and robustness, 
as they aggregate their numerous inputs by means of a dot 
product operator, yet, the local neurons provide high 
computational efficiency due to the use of Euclidian 
distance input operator, which permits the activation of 
each neuron within a small area around a certain input 
sample.  

The algorithm makes use of graph GP, namely it employs 
a direct encoding of neural architectures, by means of 
directed acyclic graphs (DAG). As opposed to the tree-
based encoding involved in classic GP (Poli et al., 2008; 
Affenzeler et al., 2009), the DAG allows the encryption of 
each neural connection as a supplementary graph link, 
which leads to an efficient reuse of the available structural 
blocks and a significant reduction of memory 
consumption in the context of highly interconnected 
architectures (Walker and Miller, 2008). The suggested 
encoding accepts only variable – type terminals, placed 
on the leaves of the graph.  

When series – parallel, input - output identification 
schemes are adopted, the terminals’ set, T, may contain 
lagged plant input and output measurements 
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where mℜ∈u  and nℜ∈y  denote the inputs and the 
outputs of the system, k indicates the current sampling 
instant and nu, ny represent the maximum permitted input 
and output lags, respectively.  

To exploit the modularity of the neural topologies inside 
the structure of the hierarchical DAG-based individuals, 
each neuron is encrypted by a single node of the graph. 
The set of functions, O, contains the functions describing 
the input-output mapping performed by the accepted 
neural unit. Therefore, a simple extension to any desired 
hybrid neural architecture is permitted, yet, more 
important, one guarantees that any recursive combination 
between the elements of O and T encode a valid neural 
network. The functions of O accept variable arity and 
embed the corresponding neural parameters. The 
proposed encryption provides simple interpretations of the 
neural models, as well as compact representations. 
However, the genetic operators have to be reconfigured to 
work also on the inner structure of the functional nodes.   

This paper considers the combination of global 
perceptrons with or without functional links, respectively, 
and local Gaussian neurons with real or complex weights. 
The functions’ set results },,,{ GCGRPFPS ffff=O .                       
Here, 
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corresponds to the standard perceptron (PS) having the 
inputs inoiiz _,1][ =  and the neural parameters 
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(where iw  and b denote the weight of the ith input 
connection and the bias, respectively) (Haykin, 1999), and 
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is associated to a global neuron with functional links (PF), 
assuming the orthogonal trigonometric expansion of 
maximum order P and the extended set of parameters 
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∑ −−
===

ino

i
ii zc

GRGRGR efy
_

1

2
2 )(

2
1

),( σθz                    (3) 

describes the behaviour of a Gaussian neuron (GR) with 
real parameters 1_

_1 ]',...,,[ +ℜ∈= ino
inoGR cc σθ , 

namely the centres inoiic _,..1][ = , and the spread σ  
(Haykin, 1999) and 



     

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅− ∑∑

=

==

==

2_

1

2_

1

2 )(sin)(cos

),(
ino

i
iii

ino

i
iii czczw

RCGCGC

e

fy

αα

θz

.      (4) 

corresponds to a local neuron with radial basis function 
and complex weights (GC), which associates for each 
input connection a center, ic  and a complex weight, 

iew α⋅−1 , leading to the set of parameters 
1_2

_1_1 ]',,...,,,..,[ +ℜ∈= ino
inoinoGC wccααθ  (Igennik 

et al., 2001).  

Note that although many homogenous neural networks 
(such as MLP, RBF) have been proved to be universal 
approximators of nonlinear, bounded, continuous 
functions, no construction theorem is available to 
guarantee a certain approximation performance. 
Therefore, in practical situations, when dealing with 
noisy, large training data sets and neural input of high 
dimension, the design procedure might fail by selecting 
an unsatisfactory model. If an adaptive architecture 
configuration is provided, HNNs can lead to better 
approximation capabilities than the homogeneous neural 
networks (Ferariu and Voicu, 2005). However, previous 
work is limited to the design of HNNs with a single 
hidden layer, by means of fixed length chromosomes. By 
employing GP techniques which inherently work on 
individuals of various sizes and shapes, the present 
approach provides increased flexibility in neural 
architecture configuration. 

For the sake of simplicity, the models are forced to 
include a single output neuron. In the case of multi-inputs 
multi-outputs systems, one can design a distinct neural 
model for the approximation of each system output, due 
to the fact that T permits to illustrate any possible 
interdependencies between the plant variables. To ensure 
non-zero response for a large range of neural inputs, the 
output neuron is assumed to be global. If lagged values of 
state variables are included in T, the approach can be used 
for the design of state based models for multivariable 
nonlinear systems. 

Note that O and T satisfy the closure property (Koza, 
1992), as data type consistency and data values 
consistency are ensured for any possible graph. 
Consequently, any individual is valid from GP 
perspective. Moreover, because no other types of nodes 
are necessary for producing the optimal solution, O is 
minimally sufficient and, if  nu and ny are chosen large 
enough, T results sufficient, too. Obviously, GP can cope 
with several alien terminals, due to its capacity of 
selecting a subset of T inside each generated individual, 
so it is not compulsory to use minimum nu and ny, 
therefore these parameters can be simply tuned by trial 
and error. 

3. IMPLEMENTATION DETAILS 

The application uses an explicit representation of 
nodes/neurons as a combination of nested data structures, 
with emphasis on a clear distinction between functions 
and terminals. Following a recursive pattern, Terminal 
and Function data structures are conveniently nested 
inside the more complex Node structure, allowing the 
construction of N-ary trees and a more efficient 
implementation of the genetic operators. The Function 
structure includes parameters which help keeping the 
track of nodes' children stored and managed by means of 
a dynamically allocated array of pointers to Node 
structures. Additionally, specific data structures allow 
operations over an individual from a neural network 
perspective, enabling it to be seen as a multilayered 
architecture. This is achieved by grouping together the 
tree nodes found at the same depth level and by allowing 
the traversing of such individuals layer by layer, instead 
of the conventional stack (queue) based or recursive 
techniques. The NodeArray structure keeps track of all 
tree nodes for a given depth, while the NeuralNet 
structure holds multiple layers (Node arrays), thus making 
possible to visit all inner nodes with two iterators, once a 
tree individual has been ”layerized”.  

The stochastic procedure uses the glib random number 
generator which uses the Mersenne Twister PRNG, which 
was originally developed by Makoto Matsumoto and 
Takuji Nishimura. Further information can be found at 
http://www.math.sci.hiroshima-u.ac.jp/~m-
at/MT/emt.html.  

Suitable functions provide an interface with the random 
source, to allow the selection of Functions and Terminals, 
as well as the initialization of the other node parameters 
(such as bias, weights, lags, etc). Note that the use of the 
linux random number source devices (/dev/random and 
/dev/urandom) is also possible (due to an abstract 
interface), with the possibility to use the processors 
hardware number generator with the systems entropy 
pool.  

When a new individual is created, its root node will have 
to be a global Function node. The depth value is randomly 
chosen and then, for each node, the type is stochastically 
generated, along with its corresponding parameters (e.g. 
number of children). Afterwards, the resulted tree-based 
individual is translated to a layered representation, via a 
procedure which joins together the pointer arrays inside 
the Function structures. The nodes from successive layers 
are randomly interconnected and the resulting connections 
are maintained for the life time of the individual.  

A distinction is made between the normal, direct 
connections which are established when a Function node 
is initially created (towards nodes which are regarded as 
its children), and the extra-connections that are 
established afterwards, between the Function node and the 
children of other nodes situated at the same level. This 
distinction is important because it allows several 
optimizations (e.g., the recursive procedures can visit 



     

each node only once) and helps the crossover to swap the 
selected sub-graphs. 

As the main concept of the application is the modular 
development of the neural networks by means of GP-
based optimization, one has to guarantee that, during the 
evolutionary loop, each graph-based individual encodes a 
valid configuration of neurons and terminals. In this 
context, validity means that the main traits of a neural 
network must be preserved (e.g., formally 
approved/established activation functions, along with 
neural parameters such as bias/dispersion of neurons, 
weights of incoming connections, etc). The activation 
functions have to be implemented according to a 
predefined calling convention, by involving another 
customized data structure, NodeInputs, which is used to 
pass functions’ parameters whenever the evaluation of an 
individual is performed. To support a modular design of 
the neural network and a simple management of different 
types of neurons, the program makes use of a dispatch 
table, namely a function pointer array which holds the 
addresses of all allowed activation functions. In this 
configuration, adding a new type of neuron is trivial, as it 
all comes down to defining the new activation function 
and adding it to the dispatch table. This extra flexibility 
comes with the cost of an indirect call of the activation 
functions, which might translate into small performance 
penalties, but most modern x86/x64 CPUs can perform 
branch prediction on indirect calls, so the effect should be 
minimal and barely noticeable, if any. On the other hand, 
a dispatch table offers the flexibility of adding or 
removing such functions, without having to change other 
areas of the program.  

The GP application is organized into several sub-modules 
which perform operations on Terminals and Functions, 
Nodes (of one of the two types), DAG-encoded 
Individuals and populations of individuals. This 
hierarchical organization lends itself to good scalability, 
making the program able to process very large graphs 
(with numerous nodes/interconnections), as basis for 
delivering good results for a variety of optimization 
problems. Additionally, the genetic operators are required 
to work on highly interconnected neural structures. 
Therefore, the design procedure has to be able to process 
a large number of incoming and outgoing neuron 
connections, the goal being to reuse as much information 
as possible in the resulted DAG-based offspring.  

In the case of structural crossover, randomly selected sub-
graphs are swapped between the parents. This requires 
specific preparations for the sub-graph externalization, 
which basically means that its connections with the rest of 
the parent's nodes must be replaced in both directions 
(incoming and outgoing). Let us denote the root of a sub-
graph with G. The algorithm relies on the following 
statements: (S1) a node N is called directly included in G 
sub-graph, if there exists a path formed only with normal 
connections provided from G to N; (S2) a node M is 
named indirectly included in graph G, if it is not directly 
included in G and there is a path of normal and extra-
connections from G to M. Fig. 1 explains the crossover 

algorithm, assuming that the sub-graph having the root 
node 7 has been selected for swapping with the second 
parent. Firstly, according to (S1) and (S2), the procedure 
identifies the subset of nodes indirectly included in the 
selected sub-graph (marked with in red Fig 1). 
Afterwards, following a one-to-one mapping, a hash table 
is created, having the subset nodes as keys, and copies of 
those nodes as values. From the sub-graph's perspective, 
in hash table terms, all outgoing connections towards keys 
must be replaced with connections towards values, so that 
the sub-graph will carry within itself the same information 
when swapped, without disrupting the configuration that 
is left behind. The replacement procedure employs special 
checks in order to preserve the consistency of the DAG-
encoded individual, because from the sub-graph's 
perspective, in some cases extra connections towards the 
keys must become normal connections  towards  values  
and,  at  the  same   time,   the values can be  connected  
together  themselves, with either a normal or an extra 
connection.  

 
Fig. 1. DAG-encoded individual selected for crossover. 
The neurons are marked with hexagons, the terminal with 
ellipses; the normal connections are denoted with solid 
lines and extra-connections (introduced at “layerization”) 
are represented by dotted links.  
 
Let 8' be the copy of node 8 (the value associated to the 
key), node 10' be the copy of node 10, and so on. The 
extra-connections from node 7 towards nodes 8 and 10 
will be replaced with normal connections towards nodes 
8' and 10'. Then, node 8' will be connected with node 18'. 
However, since node 12 also has an extra-connection 
towards node 18', in order to preserve the consistency of 
the encoding, one of the nodes (node 12) will be 
connected to node 18' using a normal connection, while 
the other one (node 8') will have an extra connection 
towards node 18'. The procedure stops when all nodes in 
the sub-graph and all nodes in the hash table have been 
visited, and all connections have been replaced.  

Once the algorithm has worked out the connections that 
need to be replaced from the sub-graph's standpoint, it 
switches to an ”outside” view, identifying those nodes 
belonging to the selected sub-graph, which have incoming 



     

connections from nodes not belonging to the selected sub-
graph. These connections will have to be replaced as well, 
in order to completely isolate the selected sub-graph and 
allow it to be swapped. The subset consisting of nodes 13, 
20, 21, 22, 28, 29 is identified and again, a hash table is 
used. Applying the same replacement rules, node 6 will 
be connected with node 13' (the connection will no longer 
be an extra connection but a normal one), node 8 will be 
connected with node 20', and in turn, node 21' will have to 
be connected to nodes 28' and 29', using normal 
connections. Node 14 will receive an extra connection 
towards node 29' and nodes 9 and 12 will receive extra 
connections towards node 20'. Finally, node 9 is 
connected to nodes 21' and 22', using normal connections. 
Afterwards, the crossover involves an exchange of 
pointers from one side to the other. 

It is already known that the crossover has the tendency of 
producing larger and larger individuals, even without 
ensuring significant improvement of the objective values. 
This phenomenon, called bloat, may lead to the 
production of overfitted individuals, with expected bad 
generalization capabilities. As a preliminary protection of 
individuals’ parsimony, the application eliminates all the 
solutions which exceed a predefined depth. Note that, 
additionally, due to the way the extra-connections could 
be processed within the DAG- based individuals, the 
structural crossover might lead to a “horizontal 
expansion”, displayed by increased number of normal 
links and, therefore, increased number of nodes. Another 
downside of the crossover is the competing conventions 
problem. It refers to the possibility of producing less 
adapted offspring, when working on different fitted 
parents, which encode the same neural network (for 
instance, when some neural building blocks are 
permutated in the selected DAGs).  

In this context, the paper suggests an additional heuristic 
which can be applied prior to crossover in order to 
identify the neurons from the hidden layers of an 
individual which are most relevant to the individuals’ 
performances. For this purpose a set of ‘sensitivity scores’ 
are computed, based on the following algorithm. For the 
individuals with the accuracy better than the average, 
sensitivity scores are assigned to their hidden neurons: 
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where yi
hid(k) represents the output of the ith hidden 

neuron, wi represents the connection weight from the ith 
hidden neuron to its parent neuron on the upper layer and 

)()()( kykykerr refoutout −=  represents the output error 
corresponding to sample k. Each hidden neuron that has a 
sensitivity score better than average, along with its inputs 
(in effect, a whole subgraph) is considered valuable and 
‘locked’ so that it won’t be affected by crossover. 

By encapsulating the better adapted substructures, it is 
possible to preserve the most relevant genetic material of 
the parents within the generated offspring, therefore 

enforcing the convergence speed of the algorithm. 
Targeted to reduce the horizontal expansion tendency and 
the bloat phenomenon, the proposed GP application also 
considers different types of mutation, applied with higher 
probabilities. Being unary operators, the mutations permit 
a better control on the complexity of the resulted 
offspring, and avoid competing conventions’ problem 
occurrence.  

The parametric mutation randomly selects a node and 
alters the values of its corresponding parameters, whilst 
the link mutation adds extra-connections from function 
nodes/neurons to the children of other neurons situated on 
the same level.  

The node mutation changes the type of randomly selected 
nodes. When a Function node turns into a Terminal one, 
some extra consideration has to be given to the 
connections which might exist from outside nodes 
towards the children of the Function node, which will be 
structurally mutated. As the children of the node will no 
longer exist, all references from the outside nodes towards 
them must be removed, or copies must be provided.  

Lastly, the structural mutation replaces a stochastically 
selected sub-graph with a randomly generated one. 

The evaluation procedure performs a recursive traversal 
of a DAG-encoded individual, by propagating the results 
of the computations upward, from the bottom of the graph 
towards the root node. When a Terminal is reached, the 
corresponding value is read based on its lag, the input 
label and the current sampling time. After all terminals 
return their values, the evaluation procedure calls the 
activation function for the Function node that they are 
connected to and the result is stored in a variable. Since 
the procedure is dealing with a large number of extra 
connections, a simple cache system is used: it sets an 
appropriate flag when a node is firstly visited, so that 
ulterior visits will retrieve the already saved result without 
wasting CPU time by re-evaluation.  

Because during a GP generation, one of the most 
important time consumers is the computation of the 
objective values, the application uses pthreads [https:// 
computing.llnl.gov/ tutorials/ pthreads/ #Overview] to 
distribute this task among the available CPU cores. 
Depending on the number of existing cores, the 
population (a NodeArray structure) is partitioned, by 
means of indexes and offset variables, so that each thread 
can perform the calculations independently (the threads 
are joined after evaluation of every individual).  

Additionally, the program can export tree individuals to 
plain text files using the dot language to represent graph 
structure (http://www.graphviz.org).  Using the 
opensource Graph Visualization Software (Graphviz), the 
files can be converted to a wide variety of graphic 
formats.  

4. APPLICATION 

The software package has been verified on Lorenz 
attractor time series prediction. The training and 



     

validation data sets, each one consisting of 250 samples, 
indicate different state trajectories collected for distinct 
initial conditions ([0.1,0.1,0.1] and [0.3,0.3,0.3], 
respectively), considering the chaotic state model  

),(10 xyx −=&  ,27 yxxzy −+−=& zxyz *3/8−=&  and 
the sampling period 1.0=sT . The HNN is designed to 
predict x trajectory. Therefore, T contains lagged values 
corresponding to all system state variables, 

),..1(),1(),1([ −−−= kzkykxT )(),( zy nkznky −− ]. 

The main challenge for the application lies in delivering 
the high performances of accuracy and generalization 
required for the selected model, in compliance with the 
chaotic nature of Lorenz system. Several algorithm 
parameter sets were used to illustrate the behavior of the 
proposed GP-based approach (Table 1). The population 
was initialized with simple HNNs having maximum three 
incoming connections per neuron, as the interconnectivity 
may significantly increase during the evolutionary loop, 
by means of genetic operators. Table 1 indicates the 
average accuracy performances, as well the quality of the 
best model resulted during 10 independent runs. Here, 
MSE_L and MSE_T represent the mean output squared 
errors obtained over scaled learning and testing data, 
respectively. For the sake of simplicity, one considers 

nnnn zyx === .  

Table 1. Experimental Results – Crossover without 
Additional Heuristics 

Nind/Ngen = population size/ number of generations; n=maximum lag; 
d= maximum depth of graphs. 

Table 2. Experimental Results – Crossover with 
Additional Heuristics 

Nind/Ngen = population size/ number of generations; n=maximum lag; 
d= maximum depth of graphs. 

Firstly, the application was verified without including the 
suggested heuristics based crossover. If 1=n , T results 
minimally sufficient (#1, #3) and the risk of overfiting is 
reduced. Although it seems simpler to find proper models 
by exploring fewer potential neural topologies, note that 
the individuals’ performances reveal the symbiosis 
between structure and parameters, so GP can discard 
HNNs with appropriate architecture, yet inconvenient 
parameters. Consequently, the final model could be 

sometimes simpler than necessary, leading to improper 
MSE_L. This downside could be diminished when 
working on larger populations (#1 vs. # 3, #5) and, 
obviously, the hybridization with certain local 
optimization procedures could be beneficial. If T includes 
alien lagged state variable values ( 1>n ), the use of small 
d permits to eliminate excessively complex individuals 
expected to include unnecessary intron building blocks, 
yet the risk producing overfitted individuals remains. 
However, the best individual came up during run #4, 
which proves that the genetic algorithm can also work on 
slightly larger terminal sets. 

 
Fig. 2. The prediction error provided by HNN /MLP/  
RBF on non-scaled validation data set. Resulted mean 
output squared errors are, correspondingly, 15.08 / 35.2 / 
458.6. 
 

 

 
Fig. 3. Individuals generated according to configuration 
#3 indicated in Table 2. 

Average values Best model # Nind/ Ngen n d 
MSE_L MSE_T MSE_L MSE_T 

1 1000/300 1 3 7.2 1.3 3.22 0.41 
2 1000/300 3 3 1.1 1.69 0.31 0.54 
3 5000/300 1 3 3.41 0.63 0.78 0.38 
4 5000/300 3 3 0.76 1.04 0.39 0.44 
5 10000/300 1 3 2.3 0.36 0.40 0.24 
6 10000/300 1 4 0.94 0.27 0.63 0.34 

Average values Best model # Nind/ Ngen n d 
MSE_L MSE_T MSE_L MSE_T 

1 1000/300 1 3 0.946 0.999 0.481 0.520 
2 1000/300 3 3 1.164 1.247 0.441 0.422 
3 5000/300 1 3 0.602 0.657 0.399 0.413 
4 5000/300 3 3 0.570 0.643 0.213 0.231 
5 10000/300 1 3 0.361 0.356 0.295 0.304 
6 10000/300 1 4 0.349 0.339 0.332 0.308 



     

The exploration can be also enforced by working on 
larger and diverse populations, although increasing the 
population size (and/or the number of generations) is not 
always a guarantee for performance improvement.  

Stress testing (#5, #6) reveals the capacity of the 
algorithm of working on large batches of neurons (about 
230000 per generation), whilst preserving reasonable time 
performances (about 120-200 sec total execution time) 
and memory consumption (about 65 MB). All trials were 
carried out on a configuration with Code 2 Duo P7350 
(2GHz, 3MB cache) and 3GB RAM. Note that each 
Function data structure needs 40 bytes and each Terminal 
structure requires 12 bytes.  

Lastly, the performances of the selected model #4 
(including one PS output neuron and 2 hidden neurons – 1 
PS and 1 GR) were compared with those provided by 
homogeneous neural networks having the same number of 
hidden neural units: an MLP trained for 5000 epochs with 
Levenberg-Marquardt algorithm, and an RBF designed by 
means of a constructive algorithm (which iteratively adds 
GR neurons). The designed HNN features better 
prediction and better generalization capabilities (Fig.2), 
making use of its particular compact partially 
interconnected heterogeneous structure. Comparable 
performances of accuracy and generalization can be 
achieved with larger homogeneous neural networks, 
including about 4 hidden PS, or 15 GR. 

When using the heuristics based crossover (Table 2) 
certain building blocks belonging to the best individuals 
were preserved by not allowing the genetic operators to 
act on them if their sensitivity score was greater than a 
certain ratio. This enhanced crossover has improved the 
convergence of the GP system by allowing good 
structures/sub-graphs to remain unchanged.  

The results listed in Table 2 indicate better accuracy on 
the training data set for the neural model selected in most 
of the configurations (#1, 3, 4, 5, 6 in Table 1 vs. #1, 3, 4, 
5, 6 in Table 2 for average MSE_L and MSE_L of the best 
designed model). However, due the fact the encapsulation 
of the best adapted substructures does not take into 
account the complexity order, MSE_T is not necessarily 
smaller (#3 in Table 1 vs. #3 in Table 2). Although note 
that even in these cases the models admit a reduced 
number of parameters, as illustrated in Fig. 3. The main 
explanations refer to the flexibility allowed by the partial 
interconnected HNN formalism and the suggested 
enhanced GP techniques.  

5. CONCLUSIONS 

The suggested C-based approach implements GP 
techniques in an efficient manner for the flexible design 
of hybrid neural network models. It achieves its goal by 
concomitantly working on the structure and parameters of 

the model, with the help of special genetic operators 
designed to ensure the validity of all models from both a 
phenotypic and genotypic standpoint. Addressing the 
validity issue involves keeping track of all node 
parameters, normal and extra connections inside the graph 
individual, prior and after the execution of mutation and 
crossover. 

Furthermore, by using a simple heuristic based on node 
sensitivity scores to guide the crossover process, the 
overall convergence speed of the algorithm is improved. 

The application features a low memory footprint and a 
fast evaluation of individuals, even when working on 
massive and highly interconnected structure. The 
experimental trials indicate the ability of the suggested 
approach to solve difficult identification/ modelling 
problems, while dealing with scarce a priori information 
and severe requirements of accuracy. 

REFERENCES 

Flemming, P.J. and Purshouse, R.C. (2002). Evolutionary 
Algorithms in Control Systems Engineering: A 
Survey, Control Engineering Practice, 10, 1223-1241. 

Ferariu, L. and Voicu, M. (2005). Nonlinear System 
Identification Based on Evolutionary Dynamic Neural 
Networks with Hybrid Structure, Proc. of IFAC 
Congress, Prague, Czech Republic. 

Poli, R., Langdon, W. B. and Mc Phee, N. F. (2008). A 
Field Guide to Genetic Programming, http://lulu.com 
(with contributions of J.R. Koza), [Online]. Available: 
http://www.gp-field-guide.org.uk. 

Affenzeler M., Winkler S., Wagner S. and Beham A. 
(2009). Genetic Algorithms and Genetic 
Programming: Modern Concepts and Practical 
Applications (Numerical Insights), CRC Press. 

Walker A. and Miller, J.F. (2008). The Automatic 
Acquisition, Evolution and Reuse of Modules in 
Cartesian Genetic Programming. IEEE Transactions 
on Evolutionary Computation, 12 (4), 397-417. 

Haykin, S. (1999). Neural Networks - A Comprehensive 
Foundation, McMillan College Publishing Company, 
New York, 2nd Edition.  

Patra J., Pal R., Chatterji and B., Panda G. (1999). 
Identification of nonlinear dynamic systems using 
functional link artificial neural networks, IEEE 
Transactions on System, Man and Cybernetics, Part B: 
Cybernetics, 29, 254–262. 

Igennik B., Tabib–Azar M., Le Clair S.R. (2001). A net 
with complex weights, IEEE Transactions on Neural 
Networks, 12, 236–249. 

Koza, J.R. (1992). Genetic Programming: On the 
Programming of Computers by Means of Natural 
Selection. Cambridge, MA: MIT Press. 

 


