

Graph Genetic Programming with Heuristics Based Crossover

Bogdan Burlacu*, Lavinia Ferariu*

*Department of Automatic Control and Industrial Informatics,
“Gheorghe Asachi” Technical University of Iasi, Romania,

RO, 27 Bd. D. Mangeron 27, IS 700 050 (e-mail: bburlacu@ ac.tuiasi.ro, lferaru@ac.tuiasi.ro).

Abstract: This paper presents a new neuro-evolutionary system for the design of feed forward
hybrid neural models. Every individual is directly encoded as a directed acyclic graph, allowing
the development of partially interconnected architectures with heterogeneous layers including
both local and global neurons. The use of different neuron types provides improved performances
in terms of approximation quality for a large class of nonlinear system identification problems,
while the direct graph encoding ensures a simpler interpretation of the hierarchical individuals, as
well as a compact representation. The authors recommend a special minimally sufficient set of
functions and customized compatible genetic operators, which exploit the inherent characteristics
of the neural architectures (modularity, high interconnectivity and high level of parallelism). An
extra effort is made towards improving the genetic algorithms convergence speed by introducing a
special sensitivity score for each hidden neuron as part of a novel crossover strategy aimed to
preserve valuable structural blocks inside the individual. Featuring multithreaded execution and
specialized data structures, the C application scales well on multi core computers and has a low
memory footprint, being suitable for complex nonlinear identification problems.

Keywords: genetic programming, genetic operators, neural networks, system identification,
optimization.

1. INTRODUCTION

The employment of genetic programming as a neuro -
evolutionary technique represents a modern approach for
complex nonlinear identification problems. Neuro-genetic
systems benefit greatly from the learning ability and
computational efficiency (due to the highly
interconnected, parallel structure) of neural networks,
while, on the other hand, the evolutionary component
provides a more robust and flexible selection of the model
structure and/or corresponding parameters, being also
able to deal with noisy data, time-variance, nonlinearities
and other difficulties specific to industrial environments.
Overall, one such system offers increased flexibility for
the simultaneous selection of model structure and
parameters for a wide range of applications, without
requiring a large set of aprioric information (Flemming
and Purshouse, 2002; Ferariu and Voicu, 2005; Poli et al.,
2008).

With these advantages in mind, numerous approaches
have been suggested in the related literature (Flemming
and Purshouse, 2002). In each case, the first problem that
arises is the selection of an appropriate chromosomial
encoding of the hierarchical neural structures. The
standard genetic algorithm requires the use of
supplementary “control” genes for the encryption of
hierarchical topologies, which leads to longer
chromosomes and to a more difficult exploration, while
the canonical GP implicitly works on tree-based
individuals. The most direct and compact representations
is the graph based one, yet this is not a common

encryption in the standard evolutionary loop. The
extension of canonical GP to work on graph-based
individuals requires a more complicated logic inside the
genetic operators, as well as specific measures to ensure
the correctness of the resulting individuals.

This approach employs graph GP for the concomitant
selection of neural topologies and parameters of hybrid
neural networks (HNN). The modularity and parallelism
of neural networks is exploited through a special
definition of primitive sets and corresponding specific
crossover and mutation operators that ensure that any
recursive combination of functional and terminal nodes
leads to valid individuals, from both a phenotypic and
genotypic standpoint.

This paper introduces a special guided structural
crossover which analyzes the performances of the
component sub-graphs before selecting the cutting points.
This heuristics is useful for preventing the loss of the best
adapted substructures, with benefits on the performances
of the resulted offspring and, consequently, on the
convergence speed of the algorithm.

Unlike previous graph evolutionary algorithms which deal
with a limited variety of structural templates (especially
with MLP), the modular generation of graph-encrypted
individuals enables the development of partially
interconnected hybrid networks, which are expected to
deliver increased performances for wide classes of
applications (Flemming and Purshouse, 2002; Poli et al.,
2008). The hybrid neural networks accept combinations
of hidden neurons with global and local responses, thus

being suitable for both interpolation and extrapolation
problems (Ferariu and Voicu, 2005).

The paper is organized as follows. Section 2 browses the
main features of the suggested design algorithm, whilst
Section 3 discusses details regarding the proposed C
implementation, with emphasis on data structure design
and algorithms adopted for population initialization and
offspring generation. Section 4 comments the
applicability of the approach to chaotic time series
prediction via several experimental trials and last section
is devoted to conclusions.

2. ALGORITHM OVERVIEW

The algorithm starts with a randomly generated initial
population of graph-based individuals, each one
encrypting a possible hybrid neural model. The quality of
each solution is assessed in terms of output squared error
computed over the whole training data set and,
subsequently, the fitness values, stated as selection
probabilities, are determined by means of linear ranking.
At each generation, the best individuals are selected into
the recombination pool, by using stochastic universal
sampling. Afterwards, specific crossovers and mutations
are applied to produce new models, with potentially better
performances. Note that the genetic operators act at both
structural and parametric level. The best offspring replace
the less adapted individuals in the population which is
passed to the next generation.

The suggested design algorithm is compliant with feed-
forward, partially interconnected HNN with external
delay blocks. A neuron may receive input stimuli from
any subset of neurons of the previous layer, as well as
from any subset of the neural inputs. To provide enhanced
adaption capabilities in interpolation and extrapolation
problems, the hidden layers can comprise of any
combination of neural units with local or global response.
Note that the neurons with global response are able to
bring increased generalization capabilities and robustness,
as they aggregate their numerous inputs by means of a dot
product operator, yet, the local neurons provide high
computational efficiency due to the use of Euclidian
distance input operator, which permits the activation of
each neuron within a small area around a certain input
sample.

The algorithm makes use of graph GP, namely it employs
a direct encoding of neural architectures, by means of
directed acyclic graphs (DAG). As opposed to the tree-
based encoding involved in classic GP (Poli et al., 2008;
Affenzeler et al., 2009), the DAG allows the encryption of
each neural connection as a supplementary graph link,
which leads to an efficient reuse of the available structural
blocks and a significant reduction of memory
consumption in the context of highly interconnected
architectures (Walker and Miller, 2008). The suggested
encoding accepts only variable – type terminals, placed
on the leaves of the graph.

When series – parallel, input - output identification
schemes are adopted, the terminals’ set, T, may contain
lagged plant input and output measurements

)](),..,1(),(),..,([yu nkknkk −−−= yyuuT ,

where mℜ∈u and nℜ∈y denote the inputs and the
outputs of the system, k indicates the current sampling
instant and nu, ny represent the maximum permitted input
and output lags, respectively.

To exploit the modularity of the neural topologies inside
the structure of the hierarchical DAG-based individuals,
each neuron is encrypted by a single node of the graph.
The set of functions, O, contains the functions describing
the input-output mapping performed by the accepted
neural unit. Therefore, a simple extension to any desired
hybrid neural architecture is permitted, yet, more
important, one guarantees that any recursive combination
between the elements of O and T encode a valid neural
network. The functions of O accept variable arity and
embed the corresponding neural parameters. The
proposed encryption provides simple interpretations of the
neural models, as well as compact representations.
However, the genetic operators have to be reconfigured to
work also on the inner structure of the functional nodes.

This paper considers the combination of global
perceptrons with or without functional links, respectively,
and local Gaussian neurons with real or complex weights.
The functions’ set results },,,{ GCGRPFPS ffff=O .
Here,

)tanh(),(
_

1
∑ +=
=

ino

i
iiPSPS bzwf θz (1)

corresponds to the standard perceptron (PS) having the
inputs inoiiz _,1][= and the neural parameters

1_
_1]',,..,[+ℜ∈= ino

inoPS bwwθ

(where iw and b denote the weight of the ith input
connection and the bias, respectively) (Haykin, 1999), and

)))(sin

)(cos(tanh(),(

1

1

_

1

bzwjzw

jzwf

ii
P

j
i

s

P

j
i

cino

i
PFPF

ij

ij

++∑+

∑∑=

=

==

π

πθz
 (2)

is associated to a global neuron with functional links (PF),
assuming the orthogonal trigonometric expansion of
maximum order P and the extended set of parameters

)12(_1 +⋅+ℜ∈ Pino
PFθ (Patra et al., 1999). Also,

∑ −−
===

ino

i
ii zc

GRGRGR efy
_

1

2
2)(

2
1

),(σθz (3)

describes the behaviour of a Gaussian neuron (GR) with
real parameters 1_

_1]',...,,[+ℜ∈= ino
inoGR cc σθ ,

namely the centres inoiic _,..1][= , and the spread σ
(Haykin, 1999) and

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅− ∑∑

=

==

==

2_

1

2_

1

2)(sin)(cos

),(
ino

i
iii

ino

i
iii czczw

RCGCGC

e

fy

αα

θz

. (4)

corresponds to a local neuron with radial basis function
and complex weights (GC), which associates for each
input connection a center, ic and a complex weight,

iew α⋅−1 , leading to the set of parameters
1_2

_1_1]',,...,,,..,[+ℜ∈= ino
inoinoGC wccααθ (Igennik

et al., 2001).

Note that although many homogenous neural networks
(such as MLP, RBF) have been proved to be universal
approximators of nonlinear, bounded, continuous
functions, no construction theorem is available to
guarantee a certain approximation performance.
Therefore, in practical situations, when dealing with
noisy, large training data sets and neural input of high
dimension, the design procedure might fail by selecting
an unsatisfactory model. If an adaptive architecture
configuration is provided, HNNs can lead to better
approximation capabilities than the homogeneous neural
networks (Ferariu and Voicu, 2005). However, previous
work is limited to the design of HNNs with a single
hidden layer, by means of fixed length chromosomes. By
employing GP techniques which inherently work on
individuals of various sizes and shapes, the present
approach provides increased flexibility in neural
architecture configuration.

For the sake of simplicity, the models are forced to
include a single output neuron. In the case of multi-inputs
multi-outputs systems, one can design a distinct neural
model for the approximation of each system output, due
to the fact that T permits to illustrate any possible
interdependencies between the plant variables. To ensure
non-zero response for a large range of neural inputs, the
output neuron is assumed to be global. If lagged values of
state variables are included in T, the approach can be used
for the design of state based models for multivariable
nonlinear systems.

Note that O and T satisfy the closure property (Koza,
1992), as data type consistency and data values
consistency are ensured for any possible graph.
Consequently, any individual is valid from GP
perspective. Moreover, because no other types of nodes
are necessary for producing the optimal solution, O is
minimally sufficient and, if nu and ny are chosen large
enough, T results sufficient, too. Obviously, GP can cope
with several alien terminals, due to its capacity of
selecting a subset of T inside each generated individual,
so it is not compulsory to use minimum nu and ny,
therefore these parameters can be simply tuned by trial
and error.

3. IMPLEMENTATION DETAILS

The application uses an explicit representation of
nodes/neurons as a combination of nested data structures,
with emphasis on a clear distinction between functions
and terminals. Following a recursive pattern, Terminal
and Function data structures are conveniently nested
inside the more complex Node structure, allowing the
construction of N-ary trees and a more efficient
implementation of the genetic operators. The Function
structure includes parameters which help keeping the
track of nodes' children stored and managed by means of
a dynamically allocated array of pointers to Node
structures. Additionally, specific data structures allow
operations over an individual from a neural network
perspective, enabling it to be seen as a multilayered
architecture. This is achieved by grouping together the
tree nodes found at the same depth level and by allowing
the traversing of such individuals layer by layer, instead
of the conventional stack (queue) based or recursive
techniques. The NodeArray structure keeps track of all
tree nodes for a given depth, while the NeuralNet
structure holds multiple layers (Node arrays), thus making
possible to visit all inner nodes with two iterators, once a
tree individual has been ”layerized”.

The stochastic procedure uses the glib random number
generator which uses the Mersenne Twister PRNG, which
was originally developed by Makoto Matsumoto and
Takuji Nishimura. Further information can be found at
http://www.math.sci.hiroshima-u.ac.jp/~m-
at/MT/emt.html.

Suitable functions provide an interface with the random
source, to allow the selection of Functions and Terminals,
as well as the initialization of the other node parameters
(such as bias, weights, lags, etc). Note that the use of the
linux random number source devices (/dev/random and
/dev/urandom) is also possible (due to an abstract
interface), with the possibility to use the processors
hardware number generator with the systems entropy
pool.

When a new individual is created, its root node will have
to be a global Function node. The depth value is randomly
chosen and then, for each node, the type is stochastically
generated, along with its corresponding parameters (e.g.
number of children). Afterwards, the resulted tree-based
individual is translated to a layered representation, via a
procedure which joins together the pointer arrays inside
the Function structures. The nodes from successive layers
are randomly interconnected and the resulting connections
are maintained for the life time of the individual.

A distinction is made between the normal, direct
connections which are established when a Function node
is initially created (towards nodes which are regarded as
its children), and the extra-connections that are
established afterwards, between the Function node and the
children of other nodes situated at the same level. This
distinction is important because it allows several
optimizations (e.g., the recursive procedures can visit

each node only once) and helps the crossover to swap the
selected sub-graphs.

As the main concept of the application is the modular
development of the neural networks by means of GP-
based optimization, one has to guarantee that, during the
evolutionary loop, each graph-based individual encodes a
valid configuration of neurons and terminals. In this
context, validity means that the main traits of a neural
network must be preserved (e.g., formally
approved/established activation functions, along with
neural parameters such as bias/dispersion of neurons,
weights of incoming connections, etc). The activation
functions have to be implemented according to a
predefined calling convention, by involving another
customized data structure, NodeInputs, which is used to
pass functions’ parameters whenever the evaluation of an
individual is performed. To support a modular design of
the neural network and a simple management of different
types of neurons, the program makes use of a dispatch
table, namely a function pointer array which holds the
addresses of all allowed activation functions. In this
configuration, adding a new type of neuron is trivial, as it
all comes down to defining the new activation function
and adding it to the dispatch table. This extra flexibility
comes with the cost of an indirect call of the activation
functions, which might translate into small performance
penalties, but most modern x86/x64 CPUs can perform
branch prediction on indirect calls, so the effect should be
minimal and barely noticeable, if any. On the other hand,
a dispatch table offers the flexibility of adding or
removing such functions, without having to change other
areas of the program.

The GP application is organized into several sub-modules
which perform operations on Terminals and Functions,
Nodes (of one of the two types), DAG-encoded
Individuals and populations of individuals. This
hierarchical organization lends itself to good scalability,
making the program able to process very large graphs
(with numerous nodes/interconnections), as basis for
delivering good results for a variety of optimization
problems. Additionally, the genetic operators are required
to work on highly interconnected neural structures.
Therefore, the design procedure has to be able to process
a large number of incoming and outgoing neuron
connections, the goal being to reuse as much information
as possible in the resulted DAG-based offspring.

In the case of structural crossover, randomly selected sub-
graphs are swapped between the parents. This requires
specific preparations for the sub-graph externalization,
which basically means that its connections with the rest of
the parent's nodes must be replaced in both directions
(incoming and outgoing). Let us denote the root of a sub-
graph with G. The algorithm relies on the following
statements: (S1) a node N is called directly included in G
sub-graph, if there exists a path formed only with normal
connections provided from G to N; (S2) a node M is
named indirectly included in graph G, if it is not directly
included in G and there is a path of normal and extra-
connections from G to M. Fig. 1 explains the crossover

algorithm, assuming that the sub-graph having the root
node 7 has been selected for swapping with the second
parent. Firstly, according to (S1) and (S2), the procedure
identifies the subset of nodes indirectly included in the
selected sub-graph (marked with in red Fig 1).
Afterwards, following a one-to-one mapping, a hash table
is created, having the subset nodes as keys, and copies of
those nodes as values. From the sub-graph's perspective,
in hash table terms, all outgoing connections towards keys
must be replaced with connections towards values, so that
the sub-graph will carry within itself the same information
when swapped, without disrupting the configuration that
is left behind. The replacement procedure employs special
checks in order to preserve the consistency of the DAG-
encoded individual, because from the sub-graph's
perspective, in some cases extra connections towards the
keys must become normal connections towards values
and, at the same time, the values can be connected
together themselves, with either a normal or an extra
connection.

Fig. 1. DAG-encoded individual selected for crossover.
The neurons are marked with hexagons, the terminal with
ellipses; the normal connections are denoted with solid
lines and extra-connections (introduced at “layerization”)
are represented by dotted links.

Let 8' be the copy of node 8 (the value associated to the
key), node 10' be the copy of node 10, and so on. The
extra-connections from node 7 towards nodes 8 and 10
will be replaced with normal connections towards nodes
8' and 10'. Then, node 8' will be connected with node 18'.
However, since node 12 also has an extra-connection
towards node 18', in order to preserve the consistency of
the encoding, one of the nodes (node 12) will be
connected to node 18' using a normal connection, while
the other one (node 8') will have an extra connection
towards node 18'. The procedure stops when all nodes in
the sub-graph and all nodes in the hash table have been
visited, and all connections have been replaced.

Once the algorithm has worked out the connections that
need to be replaced from the sub-graph's standpoint, it
switches to an ”outside” view, identifying those nodes
belonging to the selected sub-graph, which have incoming

connections from nodes not belonging to the selected sub-
graph. These connections will have to be replaced as well,
in order to completely isolate the selected sub-graph and
allow it to be swapped. The subset consisting of nodes 13,
20, 21, 22, 28, 29 is identified and again, a hash table is
used. Applying the same replacement rules, node 6 will
be connected with node 13' (the connection will no longer
be an extra connection but a normal one), node 8 will be
connected with node 20', and in turn, node 21' will have to
be connected to nodes 28' and 29', using normal
connections. Node 14 will receive an extra connection
towards node 29' and nodes 9 and 12 will receive extra
connections towards node 20'. Finally, node 9 is
connected to nodes 21' and 22', using normal connections.
Afterwards, the crossover involves an exchange of
pointers from one side to the other.

It is already known that the crossover has the tendency of
producing larger and larger individuals, even without
ensuring significant improvement of the objective values.
This phenomenon, called bloat, may lead to the
production of overfitted individuals, with expected bad
generalization capabilities. As a preliminary protection of
individuals’ parsimony, the application eliminates all the
solutions which exceed a predefined depth. Note that,
additionally, due to the way the extra-connections could
be processed within the DAG- based individuals, the
structural crossover might lead to a “horizontal
expansion”, displayed by increased number of normal
links and, therefore, increased number of nodes. Another
downside of the crossover is the competing conventions
problem. It refers to the possibility of producing less
adapted offspring, when working on different fitted
parents, which encode the same neural network (for
instance, when some neural building blocks are
permutated in the selected DAGs).

In this context, the paper suggests an additional heuristic
which can be applied prior to crossover in order to
identify the neurons from the hidden layers of an
individual which are most relevant to the individuals’
performances. For this purpose a set of ‘sensitivity scores’
are computed, based on the following algorithm. For the
individuals with the accuracy better than the average,
sensitivity scores are assigned to their hidden neurons:

∑⋅=
=

N

k out

i
hid

i
i

kerr
kywC

1)(
)(, (5)

where yi
hid(k) represents the output of the ith hidden

neuron, wi represents the connection weight from the ith
hidden neuron to its parent neuron on the upper layer and

)()()(kykykerr refoutout −= represents the output error
corresponding to sample k. Each hidden neuron that has a
sensitivity score better than average, along with its inputs
(in effect, a whole subgraph) is considered valuable and
‘locked’ so that it won’t be affected by crossover.

By encapsulating the better adapted substructures, it is
possible to preserve the most relevant genetic material of
the parents within the generated offspring, therefore

enforcing the convergence speed of the algorithm.
Targeted to reduce the horizontal expansion tendency and
the bloat phenomenon, the proposed GP application also
considers different types of mutation, applied with higher
probabilities. Being unary operators, the mutations permit
a better control on the complexity of the resulted
offspring, and avoid competing conventions’ problem
occurrence.

The parametric mutation randomly selects a node and
alters the values of its corresponding parameters, whilst
the link mutation adds extra-connections from function
nodes/neurons to the children of other neurons situated on
the same level.

The node mutation changes the type of randomly selected
nodes. When a Function node turns into a Terminal one,
some extra consideration has to be given to the
connections which might exist from outside nodes
towards the children of the Function node, which will be
structurally mutated. As the children of the node will no
longer exist, all references from the outside nodes towards
them must be removed, or copies must be provided.

Lastly, the structural mutation replaces a stochastically
selected sub-graph with a randomly generated one.

The evaluation procedure performs a recursive traversal
of a DAG-encoded individual, by propagating the results
of the computations upward, from the bottom of the graph
towards the root node. When a Terminal is reached, the
corresponding value is read based on its lag, the input
label and the current sampling time. After all terminals
return their values, the evaluation procedure calls the
activation function for the Function node that they are
connected to and the result is stored in a variable. Since
the procedure is dealing with a large number of extra
connections, a simple cache system is used: it sets an
appropriate flag when a node is firstly visited, so that
ulterior visits will retrieve the already saved result without
wasting CPU time by re-evaluation.

Because during a GP generation, one of the most
important time consumers is the computation of the
objective values, the application uses pthreads [https://
computing.llnl.gov/ tutorials/ pthreads/ #Overview] to
distribute this task among the available CPU cores.
Depending on the number of existing cores, the
population (a NodeArray structure) is partitioned, by
means of indexes and offset variables, so that each thread
can perform the calculations independently (the threads
are joined after evaluation of every individual).

Additionally, the program can export tree individuals to
plain text files using the dot language to represent graph
structure (http://www.graphviz.org). Using the
opensource Graph Visualization Software (Graphviz), the
files can be converted to a wide variety of graphic
formats.

4. APPLICATION

The software package has been verified on Lorenz
attractor time series prediction. The training and

validation data sets, each one consisting of 250 samples,
indicate different state trajectories collected for distinct
initial conditions ([0.1,0.1,0.1] and [0.3,0.3,0.3],
respectively), considering the chaotic state model

),(10 xyx −=& ,27 yxxzy −+−=& zxyz *3/8−=& and
the sampling period 1.0=sT . The HNN is designed to
predict x trajectory. Therefore, T contains lagged values
corresponding to all system state variables,

),..1(),1(),1([−−−= kzkykxT)(),(zy nkznky −−].

The main challenge for the application lies in delivering
the high performances of accuracy and generalization
required for the selected model, in compliance with the
chaotic nature of Lorenz system. Several algorithm
parameter sets were used to illustrate the behavior of the
proposed GP-based approach (Table 1). The population
was initialized with simple HNNs having maximum three
incoming connections per neuron, as the interconnectivity
may significantly increase during the evolutionary loop,
by means of genetic operators. Table 1 indicates the
average accuracy performances, as well the quality of the
best model resulted during 10 independent runs. Here,
MSE_L and MSE_T represent the mean output squared
errors obtained over scaled learning and testing data,
respectively. For the sake of simplicity, one considers

nnnn zyx === .

Table 1. Experimental Results – Crossover without
Additional Heuristics

Nind/Ngen = population size/ number of generations; n=maximum lag;
d= maximum depth of graphs.

Table 2. Experimental Results – Crossover with
Additional Heuristics

Nind/Ngen = population size/ number of generations; n=maximum lag;
d= maximum depth of graphs.

Firstly, the application was verified without including the
suggested heuristics based crossover. If 1=n , T results
minimally sufficient (#1, #3) and the risk of overfiting is
reduced. Although it seems simpler to find proper models
by exploring fewer potential neural topologies, note that
the individuals’ performances reveal the symbiosis
between structure and parameters, so GP can discard
HNNs with appropriate architecture, yet inconvenient
parameters. Consequently, the final model could be

sometimes simpler than necessary, leading to improper
MSE_L. This downside could be diminished when
working on larger populations (#1 vs. # 3, #5) and,
obviously, the hybridization with certain local
optimization procedures could be beneficial. If T includes
alien lagged state variable values (1>n), the use of small
d permits to eliminate excessively complex individuals
expected to include unnecessary intron building blocks,
yet the risk producing overfitted individuals remains.
However, the best individual came up during run #4,
which proves that the genetic algorithm can also work on
slightly larger terminal sets.

Fig. 2. The prediction error provided by HNN /MLP/
RBF on non-scaled validation data set. Resulted mean
output squared errors are, correspondingly, 15.08 / 35.2 /
458.6.

Fig. 3. Individuals generated according to configuration
#3 indicated in Table 2.

Average values Best model # Nind/ Ngen n d
MSE_L MSE_T MSE_L MSE_T

1 1000/300 1 3 7.2 1.3 3.22 0.41
2 1000/300 3 3 1.1 1.69 0.31 0.54
3 5000/300 1 3 3.41 0.63 0.78 0.38
4 5000/300 3 3 0.76 1.04 0.39 0.44
5 10000/300 1 3 2.3 0.36 0.40 0.24
6 10000/300 1 4 0.94 0.27 0.63 0.34

Average values Best model # Nind/ Ngen n d
MSE_L MSE_T MSE_L MSE_T

1 1000/300 1 3 0.946 0.999 0.481 0.520
2 1000/300 3 3 1.164 1.247 0.441 0.422
3 5000/300 1 3 0.602 0.657 0.399 0.413
4 5000/300 3 3 0.570 0.643 0.213 0.231
5 10000/300 1 3 0.361 0.356 0.295 0.304
6 10000/300 1 4 0.349 0.339 0.332 0.308

The exploration can be also enforced by working on
larger and diverse populations, although increasing the
population size (and/or the number of generations) is not
always a guarantee for performance improvement.

Stress testing (#5, #6) reveals the capacity of the
algorithm of working on large batches of neurons (about
230000 per generation), whilst preserving reasonable time
performances (about 120-200 sec total execution time)
and memory consumption (about 65 MB). All trials were
carried out on a configuration with Code 2 Duo P7350
(2GHz, 3MB cache) and 3GB RAM. Note that each
Function data structure needs 40 bytes and each Terminal
structure requires 12 bytes.

Lastly, the performances of the selected model #4
(including one PS output neuron and 2 hidden neurons – 1
PS and 1 GR) were compared with those provided by
homogeneous neural networks having the same number of
hidden neural units: an MLP trained for 5000 epochs with
Levenberg-Marquardt algorithm, and an RBF designed by
means of a constructive algorithm (which iteratively adds
GR neurons). The designed HNN features better
prediction and better generalization capabilities (Fig.2),
making use of its particular compact partially
interconnected heterogeneous structure. Comparable
performances of accuracy and generalization can be
achieved with larger homogeneous neural networks,
including about 4 hidden PS, or 15 GR.

When using the heuristics based crossover (Table 2)
certain building blocks belonging to the best individuals
were preserved by not allowing the genetic operators to
act on them if their sensitivity score was greater than a
certain ratio. This enhanced crossover has improved the
convergence of the GP system by allowing good
structures/sub-graphs to remain unchanged.

The results listed in Table 2 indicate better accuracy on
the training data set for the neural model selected in most
of the configurations (#1, 3, 4, 5, 6 in Table 1 vs. #1, 3, 4,
5, 6 in Table 2 for average MSE_L and MSE_L of the best
designed model). However, due the fact the encapsulation
of the best adapted substructures does not take into
account the complexity order, MSE_T is not necessarily
smaller (#3 in Table 1 vs. #3 in Table 2). Although note
that even in these cases the models admit a reduced
number of parameters, as illustrated in Fig. 3. The main
explanations refer to the flexibility allowed by the partial
interconnected HNN formalism and the suggested
enhanced GP techniques.

5. CONCLUSIONS

The suggested C-based approach implements GP
techniques in an efficient manner for the flexible design
of hybrid neural network models. It achieves its goal by
concomitantly working on the structure and parameters of

the model, with the help of special genetic operators
designed to ensure the validity of all models from both a
phenotypic and genotypic standpoint. Addressing the
validity issue involves keeping track of all node
parameters, normal and extra connections inside the graph
individual, prior and after the execution of mutation and
crossover.

Furthermore, by using a simple heuristic based on node
sensitivity scores to guide the crossover process, the
overall convergence speed of the algorithm is improved.

The application features a low memory footprint and a
fast evaluation of individuals, even when working on
massive and highly interconnected structure. The
experimental trials indicate the ability of the suggested
approach to solve difficult identification/ modelling
problems, while dealing with scarce a priori information
and severe requirements of accuracy.

REFERENCES

Flemming, P.J. and Purshouse, R.C. (2002). Evolutionary
Algorithms in Control Systems Engineering: A
Survey, Control Engineering Practice, 10, 1223-1241.

Ferariu, L. and Voicu, M. (2005). Nonlinear System
Identification Based on Evolutionary Dynamic Neural
Networks with Hybrid Structure, Proc. of IFAC
Congress, Prague, Czech Republic.

Poli, R., Langdon, W. B. and Mc Phee, N. F. (2008). A
Field Guide to Genetic Programming, http://lulu.com
(with contributions of J.R. Koza), [Online]. Available:
http://www.gp-field-guide.org.uk.

Affenzeler M., Winkler S., Wagner S. and Beham A.
(2009). Genetic Algorithms and Genetic
Programming: Modern Concepts and Practical
Applications (Numerical Insights), CRC Press.

Walker A. and Miller, J.F. (2008). The Automatic
Acquisition, Evolution and Reuse of Modules in
Cartesian Genetic Programming. IEEE Transactions
on Evolutionary Computation, 12 (4), 397-417.

Haykin, S. (1999). Neural Networks - A Comprehensive
Foundation, McMillan College Publishing Company,
New York, 2nd Edition.

Patra J., Pal R., Chatterji and B., Panda G. (1999).
Identification of nonlinear dynamic systems using
functional link artificial neural networks, IEEE
Transactions on System, Man and Cybernetics, Part B:
Cybernetics, 29, 254–262.

Igennik B., Tabib–Azar M., Le Clair S.R. (2001). A net
with complex weights, IEEE Transactions on Neural
Networks, 12, 236–249.

Koza, J.R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

