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Abstract: The paper is dedicated to computational aspects related to the Discrete Wavelet 
Transform use for the analysis of electric signals in power systems. The most important aspects 
considered when selecting the analysis method are related to the use of proper techniques, able to 
avoid (or at least to limit as much as possible) the obtaining of inaccurate results because the 
applied theoretical algorithms assume signals of infinite length whilst only finite segments of them 
are submitted to the computational process at a specific moment. One intends to obtain reliable 
power quality indices (with minimum deviations from those calculated with the Fast Fourier 
Transform) and non-(or minimum) delayed, non-ambiguous “response” of details vectors to 
disturbances. The avoiding of fake faults detection or of real ones’ missing, owing to the “edge 
effect”, along with other important aspects concerning the real-time operation (execution time and 
memory consumptions) were also considered.  
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1. INTRODUCTION 

When the Discrete Wavelet Transform (DWT) is used to 
perform a Multi-resolution Analysis (MRA), firstly the 
original waveform S is decomposed in approximations 
and details. Afterward successive decompositions of the 
approximations are made, with no further decomposition 
of the details.  

Fig.1, depicts a decomposition on 3 levels (Nicolae I.D. 
and Nicolae M.S. (2011),  Mallat, S. (1998)). cAi denotes 
the approximation vector whilst cDi  denotes the detail 
vector on the i-th level. The most significant frequencies 
from the original signal appear with high magnitudes in 
that specific region of the DWT signal including them, 
with the preservation of their time localization.  

Power quality is a permanent concern nowadays, 
continuous efforts being done to find more efficient 
methods for its analysis (Manjunath, A.,  Ravikumar ,  
H.M. (2010)).  

 
Fig. 1. A decomposition on 4 levels using DWT 

For the analysis of distorting regimes, the Discrete 
Wavelet Transform is a valuable tool. Preliminary 
evaluations are required in order to determine the proper 
Wavelet mother order and the proper number of levels 
from the decomposition tree. When the determination of 
power quality indices is intended, criteria like minimum 
energy deviations and respectively minimum 
approximation error generated by the signal re-
composition process yield reliable results.  

The Fast Fourier Transform can be used for steady regimes 
in order to provide “reference data” for the values obtained 
for power quality indices when DWT-based theories are 
used (Nicolae, I.D. and Nicolae, P.M. (2011)).  

2. MATHEMATIC AND COMPUTATIONAL ISSUES 

2.1  Techniques to avoid the edge effect 

When handling signals with finite length, in order to deal 
with border distortions, the border should be treated 
differently from the other parts of the signal (Bastis, A. 
(2003)). 

Various methods are available to deal with this problem, 
referred to as "wavelets on the interval" (Cohen et al, 
1993). These interesting constructions are effective in 
theory but are not entirely satisfactory from a practical 
viewpoint (Misiti, M. et al 2007, Matlab documentation).  

Details on the rationale of these schemes are presented by 
Strang and  Nguyen (1996).  



 
 

     

 

In Matlab, the available signal extension modes (usable 
by means of the option “dwtmode” of the polymorphic 
function “dwt”)  are as follows : 

Zero-padding ('zpd'): This method assumes that the signal 
is zero outside the original support. The disadvantage of 
zero-padding is that discontinuities are artificially created 
at the border. 

Symmetrization ('sym') –default option.  This method 
assumes that signals or images can be recovered outside 
their original support by symmetric boundary value 
replication. Symmetrization has the disadvantage of 
artificially creating discontinuities of the first derivative at 
the border (works well in general for images). 

Smooth padding of order ('spd' or 'sp1'). This method 
assumes that signals or images can be recovered outside 
their original support by a simple first-order derivative 
extrapolation: padding using a linear extension fit to the 
first two and last two values. Smooth padding works well 
in general for smooth signals. 

Smooth padding of order 0 ('sp0'). This method assumes 
that signals or images can be recovered outside their 
original support by a simple constant extrapolation. For a 
signal extension this is the repetition of the first value on 
the left and last value on the right. 

Periodic-padding, fist version ('ppd'). This method 
assumes that signals or images can be recovered outside 
their original support by periodic extension. The 
disadvantage of periodic padding is that discontinuities 
are artificially created at the border. 

The DWT associated with these five modes is slightly 
redundant. But IDWT (the inverse function for DWT) 
ensures a perfect reconstruction for any of the five 
previous modes whatever the extension mode used for 
DWT. 

Periodic-padding 2-nd version ('per'): If the signal length is 
odd, the signal is first extended by adding an extra-sample 
equal to the last value on the right. Then a minimal periodic 
extension is performed on each side. This mode produces 
the smallest lenghtwave decomposition. 

Often it is preferable to use simple schemes based on 
signal extension on the boundaries. This involves the 
computation of a few extra coefficients at each stage of 
the decomposition process to get a perfect reconstruction. 
The extension is needed at each stage of the 
decomposition process. 

2.2  An algorithm for real-time implementations 

Some algorithm-related problems considered during the 
implementation of a fast direct DWT function, with high/low 
filters consisting in 4 coefficients (Jensen, A. and Cor-Harbo, 
A., (2001)) are described below. This function exhibited 
features that allow it to provide reliable results for the real-time 
analysis of electric signals in power plants.  

The coefficients for the scaling function are denoted as hi 
(high) and the wavelet coefficients are denoted as li (low). 

One step of the forward transform can be expressed as the 
infinite matrix of wavelet coefficients represented below, 
multiplied by the infinite signal vector (s).  

ai =…h0, h1, h2, h3,0,0,0,0,0,0,0,0… si 

ci =… l0, l1, l2, l3, 0,0,0,0,0,0,0,0… si+1 

ai+1 =…0,0,h0, h1, h2, h3,0,0,0,0,0,0… si+2 

ci+1 =…0,0,l0, l1, l2, l3,0,0,0,0,0,0,… si+3 

ai+2 =…0,0,0,0,h0, h1, h2, h3,0,0,0,0,… si+4 

ci+2 =…0,0,0,0,l0, l1, l2, l3,0,0,0,0,0,… si+5 

ai+3 =…0,0,0,0,0,0,h0, h1, h2, h3,0,0,… si+6 

ci+3 =…0,0,0,0,0,0,l0, l1, l2, l3,0,0,… si+7 

The dot product (inner product) of the infinite vector and 
a row of the matrix produces either a smoother version of 
the signal (ai) or a wavelet coefficient (ci). 

In an ordered wavelet transform, the smoothed coefficients 
ai are  stored in the first half of an n element array region.  
The  wavelet coefficients (ci) are stored in the second half  
of the region with n elements. The algorithm is recursive 
(the smoothed values become the input to the next step). 

The transpose of the forward transform matrix above is 
used to calculate an inverse transform step.  Here the dot 
product is formed from the result of the forward transform 
and the inverse transform matrix row, as explained below.  

si =…h2, l1, h0, l0,0,0,0,0,0,0,0,0… ai 

si+1 =… h3, l3, h1, l1, 0,0,0,0,0,0,0,0… ci 

si+2 =…0,0, h2, l1, h0, l0,0,0,0,0,0,0… ai+1 

si+3 =…0,0, h3, l3, h1, l1,0,0,0,0,0,0,… ci+1 

si+4 =…0,0,0,0, h2, l1, h0, l0,,0,0,0,0,… ai+2 

si+5 =…0,0,0,0, h3, l3, h1, l1,0,0,0,0,0,… ci+2 

si+6 =…0,0,0,0,0,0, h2, l1, h0, l0,,0,0,… ai+3 

si+7 =…0,0,0,0,0,0, h3, l3, h1, l1,0,0,… ci+3 

Using a standard dot product is inefficient since “sparse” 
matrices are involved.  In practice the wavelet coefficient 
values are moved along the signal vector and a four 
element dot product is calculated.  Expressed in terms of 
arrays, for the forward transform this would be: 
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When applied to a signal with the length N, if i=N-1, the 
elements with indices i+2 and i+3 will be beyond the end 
of   the array.  The version of the algorithm used for our 
implementation assumes that data is periodic, than data at 
the start of the signal wraps around to the end. 

The reconstruction features of the pair of functions that 
we have written in Matlab to implement the above 
algorithm were tested on several signals (gathered with a 
specialised data acquisition system). The results confirmed  



 
 

     

 

 
Fig. 2. Reconstruction error 

the reproducibility features (Fig. 2), as in all the cases the 
reconstruction error did not exceed the value of 10-12 
(which is more then 14 orders of magnitude smaller than 
the decomposed signal).    

3. OPERATIONAL CONTEXT AND PRELIMINARY 
EVALUATIONS 

Our original program was implemented on a desktop 
running Matlab vers. 7.1 under Windows XP, 
personalised to run for „best performances”. The main 
characteristics of the computer are: processor’s frequency 
of 2.4 GHz and 2GB of RAM.  

The data acquisition system (with 8 channels) was set to 
supply samples with a sampling rate which is small enough 
(almost 560 samples/periode) such as to allow one to deduce 
a comprehensive set of  information on the acquired data, in 
an ASCII form, as „quanta” . It means that the data needs 
more processing, as the mean value of the quasi-sinusoidal is 
not zero (as it should be), because a certain displacement 
relative to the Oy axis is introduced by the system.  
Therefore a „calibration to 0” operation was done firstly.  

The signal selected for the comparative studies has 
distorsions, being typical for stationary regimes in power 
systems. It  is depicted by Fig. 3. As the method used for 
the DWT analysis must provide reliable power quality 
indices, we made comparative studies on results obtained 
with our function (implementing the algorithm described in 
the 2-nd section) and respectively with dwt provided by 
Matlab, for the same values of filters and different values 

 
Fig. 3. Analysed signal 

Table 1. Values for percent deviations of power quality 
indices, calculated with dwt - different options, reported 
to the power indices calculated with dwm  

Percent deviations  Setting of 
dwtmode Ij0 Ijn I 

spd 1.3663    -5.2441     1.0220 
sym(h) -13.6858   -27.9354   -14.4477 
symw -13.6635   -8.4964   -13.4083 

asym(h) 2.6662 -54.1853    -0.9742 
asymw 1.3179    -5.5025     0.9623 

zpd 1.9287   -29.7846     0.0860 
ppd -5.6784   -7.6127    -5.7769 
sp0 -12.7914    -7.5739   -12.5338 
per 0.7574   -13.3051     0.0000 

for the option “dwtmode”. 

Table 1 gathers the percent relative differences between 
the values calculated with dwt (dwtmode as mentioned in 
the 1-st column) and the value calculated with our 
function (we will refer our method as “dwm”).  

The compared values were: the “node-zero” current, the 
“non-zero node“ current and the current’s RMS value 
respectively. The following expression for the current’s RMS 
value was used (Morsi, W.G. and El-Hawary, M.E. (2009)): 
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Ij0 denotes the RMS value for the band with the lowest 
frequency j0. It is also called „approximate” current or the 
“node zero” current.  Ij represent the sets of RMS values for 
higher frequency bands (also called “detail” currents Idet). 
Their sum gives the so-called “non-zero node” currents. 
cj0,k are the discrete wavelet coefficients, for the scale j0, 
and sample k, whilst dj,k are the discrete wavelet 
coefficients for the level j≠ j0, sample k : 

        ,),(,),( ,,,, 〉ψ〈=〉φ〈= kjkjkjkj tvdtvc
OO

               (3) 

In the above equation φj0,k represents the scale, ψj,k  
represents the wavelet function and „< >” is used to 
represent the scalar product.  

The results calculated with dwm are: Ij0=462.3985A, 
Ijn=106.6238 and I=474.5324. Considering that the 
maximum value of the signal is 653.136 A and therefore, a 
perfect sine-wave with the same magnitude should have a 
RMS value of 461.8369A, it is obvious that dwm provides a 
correct evaluation of the considered indices (as it does not 
introduce any artificial enlargement of the decomposition 
vectors). Moreover, the fft analysis of the considered signal 
revealed differences lower then 1.2% . The percent 
differences from Table 1 were calculated with: 

     100_/)__( ×− dwmvaldwtvaldwmval     (4) 

To avoid the „artificial enflating” of the signals energies 
introduced at each step by dwt (all options excepting 
„per”), we eliminated the final part from the vectors 
(artificially introduced by the dwt algorithm, as described 



 
 

     

 

in Section 4). This technique improves the accuracy of 
power-related indices’ evaluation, but makes more 
difficult the recomposition of the original signal from its 
decomposition vectors (as idwt can no longer be used).  

Our previous researches (Nicolae, I.D. et all, unpublished 
(2011)) considering the abilities of dwt to detect in an 
undelayed  manner the faults or to detect the real faults 
near the signal edges and respectively not to detect fake 
defaults owing to the Gibs phenomenon, along with the 
(expected) results from Table 1,  resulted into the 
selection of only two modalities for the use of dwt: with 
dwtmode=’spd’, respectively with dwtmode=’per’. 

4. USING DWT WITH SMOOTH PADDING 

4.1. Analysis with smooth padding, stationary regime 

Our simulations were firstly concerned with a comparative 
analysis of the results obtained for a decomposition made 
on 10 levels, a number of 4096 points/period. We used 
dwm and respectively dwt with dwtmode=’spd’. Some 
results are depicted by Fig. 4-6 (green – dwm, black - dwt). 
At each level, unlike dwm, the Matlab algorithm introduces 
new points at the end of the decomposition vectors, as one 
can see in Fig. 4-6 (marked by ellipses).   
 

 
Fig. 4. Stationary.  dwt (smooth padding) vs dwm, 

decomposition at 6-th level 

 
Fig. 5. Stationary. Smooth padding, dwt and dwm, 
decomposition at 9-th level 

 
Fig. 6. Stationary. dwt (smooth padding) vs dwm, 
decomposition at 10-th level 

 
Fig.7. Stationary. dwt (smooth padding) vs dwm, energies of 
levels 

The energies of the decomposition vectors versus levels 
are depicted by Fig.7, the mean values of the 
approximations can be seen in Fig. 8, whilst the mean 
values of the details can be seen in Fig. 9.  

All these figures reveal that an artificial energy is 
introduced by the Matlab dwt algorithm with smooth 
padding and its effects are imperfectly reduced by a 
simple shortening procedure of the vectors’ final newly 
introduced positions at each level. The mean values are 
affected, mostly at details, which must be consulted to  

 
Fig.8. Stationary. dwt (smooth padding) vs dwm, mean 
values of approximations (per levels)  



 
 

     

 

 
 
Fig.9. Stationary. dwt (smooth padding) vs dwm, mean 
values of details versus levels 

detect possible faults. The drawback of the shortening 
procedure in order to get better energetic equivalence with 
results yielded by FFT are explained in the next section. 

The undesired de-synchronization between the original 
signal and the dwt’s approximation on the final level is 
another inconvenient. 

4.2. Analysis with smooth padding, regime with randomly 
induced  fault 

To test the abilities related to faults’ detection exhibited 
by the decomposition vectors generated with dwt (smooth 
padding) versus those of the decomposition vectors 
generated by dwm, we disturbed (through soft) the signal 
analysed in steady state with a randomly generated signal, 
as depicted by Fig. 10  (the same colouring convention 
was used). 

As revealed by Fig. 11, at the first levels the details have 
almost synchronous moments for the correct detection of 
a fault, whilst at higher levels, dwt denotes the default 
later (incorrectly) – as marked by the circle ‘2’. dwm 
behaves correctly (circle ‘1’). The “enlargement” 
introduced by dwt when no “shortening” measures are 
explicitly taken can be seen in circle ‘3’.  

 
Fig.10. Non-stationary. dwt (symmetric padding) vs dwm, 
1-st level decomposition of the randomly disturbed signal  

 

(a) (b) 
Fig. 11. dwt (smooth padding) vs dwm in non-stationary 
regime. Zoom for details - 1-st level (a) and 4-th level (b) 
 

5. USING DWT WITH PERIODIC PADDING 

Fig. 12-14 depicts the results of the comparative analysis “dwt 
(periodic padding)”  versus dwm in stationary regime.    

 
Fig.12. Stationary. dwt (periodic padding) vs dwm, 
decomposition on 6-th level 

No artificial enlargements of the decomposition vectors 
were noticed when calling dwt with dwtmode=’per’. The 
shape of the details is almost the same and the level 
energies are identical. The mean values of the 
approximations were also found to be identical at both 
methods.  

The analysis with dwt (periodic padding) generates two 
drawbacks: the major one is related to the difference in 
details’ energies. They “make the difference” to the 

 
Fig.13. Stationary. dwt (periodic padding) vs dwm, 
decomposition on 10-th level 



 
 

     

 

 
Fig.14. Stationary. Periodic padding dwt and dwm, mean 
values of details versus levels 

real power quality indices. Another drawback consists in 
the phase-difference of the original signal and the 
approximated vector at higher level. To these drawbacks, 
another one is added, related to the delaying in detecting a 
fault (the same that was discussed in the previous 
section), as depicted by Fig. 15.  

 

(a) (b) 

Fig. 15. Periodic padding dwt versus dwm in non-
stationary regime. Zoom on details - 1-st level (a) and 4-th 
level (b) 
 

5. USING ORIGINAL DWT DECOMPOSITION TO 
DETECT FAULTS 

The abilities in detecting faults of the dwm are depicted by 
Fig. 16, which shows the details’ reaction when the analysed 
signal is randomly disturbed. The value of the RMS over the 
affected periods is also calculated with dwm and correctly 
was revealed to be lower than the value from the stationary 
regime (the disturbance consisted in a randomly generated 
sequence, subtracted from the original signal).  

 
Fig. 16. Analysis with dwm.  The details detect correctly the 
moment when a disturbance appears 

6. CONCLUSIONS 

The built-in functions of the Matlab’s toolkit dedicated to 
DWT analysis are not always the best options for a proper 
analysis of waveforms from power systems. They may 
induce artificial energies, unacceptable for power quality 
analysis, may introduce supplementary memory 
consumption or detect latter the faults. Phase-differences 
between the approximation vectors and original signal can 
also occur. Better and faster algorithms can be implemented 
to provide an improved analysis. The function proposed in 
this paper does not generate longer decomposition vectors, 
detects correctly the moment when a fault occurrs, can 
calculate the RMS value in non-stationary regimes for 
which FFT is hard to apply in real-time restrictions and 
exhibits an execution time 10…20 times shorter than that 
required for the use of DWT in the analysed scenarios.  
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