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Abstract: This paper deals with the pseudo bond graph modelling and the design of an asymptotic 
state observer for an ethanol production bioprocess. The bond graph model of the process is 
obtained by developing a set of rules, starting from the reactions schemes and taking into account 
the biochemical phenomena. Then, the unavailable states of the bioprocess are reconstituted from 
the measurable states by using an asymptotic observer, which is designed without the knowledge 
of the kinetics being necessary. Finally, a nonlinear estimation strategy is developed for the 
identification of unknown kinetics of the bioprocess, by using an observer based estimator. 
Several numerical simulations are conducted in order to test the performance of the proposed 
estimation algorithms. 
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1. INTRODUCTION 

The development of control strategies for biochemical 
processes is difficult because of the complexity of these 
processes. These difficulties occur from the presence of 
living organisms, the high complexity of the metabolic 
reactions, as well as the high complexity of the 
interactions between the microorganisms. For these 
reasons it is necessary to obtain dynamical models with 
high level of accuracy for their control. 

As modelling technique, the bond graph method (Karnopp 
et al., 1990, Thoma, 1990, Gawthrop and Smith, 1996, 
Dauphin-Tanguy, 2000) is used in this work. By its large 
applicability, this approach represents an important tool in 
engineering design and operation for chemical based 
processes (Thoma and Ould Bouamama, 2000, Couenne 
et al., 2006).   

In bioindustry, numerous practical applications are 
characterized by the lack of on-line measurements. Often, 
only a part of the concentrations of the components 
involved are measurable on-line. In such cases, an 
alternative is the use of state observers. An important 
difficulty when applying state observers to bioprocesses is 
related to the uncertainty of models describing their 
dynamics.  

Presently two classes of state observers for bioprocesses 
can be found in the literature (Bastin and Dochain, 1990, 
Dochain et al., 2001). The first class of observers, 
including Luenberger and Kalman observers, are based on 
a perfect knowledge of the model structure. A 
disadvantage of these observers is that the uncertainty in 
the model parameters can generate large bias in the 
estimation of unmeasured states. A second class of 

observers, called asymptotic observers, is based on the 
idea that the uncertainty in process models lies in the 
process kinetics models. The design of these observers is 
based on mass and energy balances without the 
knowledge of the process kinetics being necessary.  

One of most important issues concerning the design of 
controllers for bioprocesses is the estimation of kinetic 
rates (the so-called kinetics of the bioprocess). Regarding 
the kinetics estimation, an early approach was based on 
Kalman filter which leads to complex nonlinear 
algorithms. A well-known technique is the approach 
based on adaptive systems theory, which consists in the 
estimation of unmeasured states with asymptotic 
observers, and after that, the measurements and the state 
estimates are used for on-line estimation of kinetics. Such 
kind of algorithm is, for example, the estimator based on 
state observer (observer based estimator – OBE) (Bastin 
and Dochain, 1990, Dochain, 2008).  

This paper, which is an extended work of Roman (2011), 
is organized as follows. In Section 2, the pseudo bond 
graph model of the ethanol production process is 
developed. Then, Section 3 deals with the design of an 
asymptotic observer for this nonlinear bioprocess. In 
Section 4, the design and the implementation of an 
observer based estimator for the specific growth rate of 
the bioprocess is addressed. The kinetics estimation 
strategy uses both the measurable states and the estimates 
provided by the asymptotic observer. Several simulations 
are performed in Section 5 in order to test the behaviour 
of the model and the performance of the proposed 
nonlinear estimation strategies. Finally, in Section 6 
concluding remarks and further research directions are 
discussed. 



 
 

     

 

2. MODELLING OF ETHANOL PRODUCTION 
BIOPROCESS 

The ethanol production bioprocess is widely used in 
industry (Novak et al., 1981, Ferreira, 1995). The ethanol 
fermentation by using glucose as substrate is 
characterized by a metabolic pathway described by the 
following reaction scheme (Ferreira, 1995): 

 CkEkXSk 321 ++→
ϕ

 (1) 

where S  is the substrate, X  is the biomass, E is the 
ethanol, C is the carbon dioxide, and ϕ  is the reaction 
rate. In the reaction scheme (1), 21 , kk and 3k  are the so-
called yield coefficients of the process. 
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Fig. 1. Pseudo bond graph model of ethanol production 
bioprocess. 

From the reaction scheme (1), considering the mass 
transfer through the continuous bioreactor, using the 
modelling procedure (Roman et al., 2010), the pseudo 
bond graph model of the bioprocess is achieved. This is 
presented in Fig. 1.  

The directions of the half arrows in the bond graph 
correspond to the progress of the reactions, going out 
from the component S towards X, E, and C. In bond graph 
terms, the mass balances of the components involved in 
the bioreactor are represented by four 0-junctions: 01,2,3,4 
(mass balance for S), 07,8,9 (mass balance for X), 011,12,13 
(mass balance for E), and 015,16,17 (mass balance for C). 

The accumulations of S, X, E, and C in the bioreactor are 
represented by bonds 2, 8, 12, and 16 and they are 
modelled using modulated capacitive elements C. The 
constitutive equations of C-elements have the following 
form: 
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where C2, C8, C12, and C16 are the parameters of C-
elements: ,161282 VCCCC ==== with V being the 
bioreactor volume (L). 

Mass flows of the component entering the reaction is 
modelled using a flow source element Sf1, and the 
quantities of the components exiting from the reaction are 
modelled using also flow source elements Sf represented 
by bonds 3, 9, 13, and 17; the constitutive equations of 
these elements are as follows: 333 eSff = , 999 eSff = , 

131313 eSff = , 171717 eSff = , where 3Sf , 9Sf , 13Sf , and 

17Sf  are the parameters of Sf-elements: 

01793 FSfSfSf === , where 0F  is the output rate (l/h). 

The transformer elements TF4,5, TF10,11, TF14,15 were 
introduced to model the yield coefficients 3,1, =iki .    

For the modelling of the reaction rate, a modulated two-
port R-element, MR6,7, was used. From the constitutive 
relation of the 1-junction element, we obtain 15,6,10,14, 
where the constitutive relations of MR element imply that 

Vef 86 μ= ; μ  is the specific growth rate, 8eμ=ϕ .  

The signification of bond graph elements is as follows: 
2e  is the substrate concentration S  (mmole/L), 8e - the 

biomass concentration X ( mmole/L), and 12e  - the 
ethanol concentration E  (mmole/L), and 16e  is the 
concentration of carbon dioxide (mmole/L); inin SFf =1  
where inF  is the input feed rate (L/h), inS  is the influent 
substrate concentration (mmole/L)). Taking into account 
all these aspects, from (2)-(5) we will obtain the 
dynamical model of the ethanol production bioprocess: 

 VkSFSFSV inin ϕ−−= 10
& , (6) 

 VXFXV ϕ+−= 0
& , (7) 

 VkEFEV ϕ+−= 20
& , (8) 

 VkCFCV ϕ+−= 30
& . (9) 

Taking into account that 0FFin = , and the dilution rate 

r

in

tV
F

D 1
== , with rt  - medium residence time, the 

above equations become: 

 ϕ−−= 1kDSDSS in
& , (10) 

 ϕ+−= DXX& , (11) 

 ϕ+−= 2kDEE& , (12) 

 ϕ+−= 3kDCC& . (13) 



 
 

     

 

Using the following notations: [ ]TCESX=ξ ,  

[ ]TkkkK 3211 −= , [ ]T
inDSF 000= , and 

[ ]TQ 0000= , the equations (10)-(13) can be 
written in the following dynamical state-space form:  

 ( ) QFDK −+ξ−ξϕ=ξ& . (14) 

Remark 1. The reaction kinetics )(ξϕ  is nonlinear and 
incompletely known in most cases. However, it can be 
modelled as X)()( ξμ=ξϕ , where μ  is the so-called 
specific growth rate, which can be expressed as Monod 
law (Bastin and Dochain, 1990): 

)/()( * SKSS m +μ=μ , 

Where *μ  is the maximum specific rate and mK  is the 
Michaelis-Menten constant. 

3. A STATE ASYMPTOTIC OBSERVER FOR THE 
ETHANOL PRODUCTION BIOPROCESS 

A common problem of the ethanol production 
bioprocesses is the absence of cheap and reliable sensors 
capable of providing direct, on-line measurements of 
biological variables. This fact can produce serious 
problems when some control laws are implemented. In 
most cases, the substrate and ethanol concentrations may 
be the only measurements which are available on-line. In 
this case, the unmeasured variables (i.e. biomass and 
dissolved oxygen concentrations) can be estimated by 
using an appropriate state observer. 

In order to design a state observer for the ethanol 
production process, the general class of observers for 
bioprocesses of the form (14), developed in (Bastin and 
Dochain, 1990) will be considered: 

 )ˆ)(ˆ(ˆ)ˆ(ˆ
11 ζ−ζξΩ+−+ξ−ξϕ=ξ QFDK& ,   (15) 

where ξ̂  is the estimated state vector, )ˆ(ξΩ  is a gain 
matrix, and 1ζ  is the vector of measurable state variables: 

ξ=ζ L1 , L – a selection matrix. The design of observer 
lies in the choice of the gain matrix.  

Based on the general form (15), the so-called exponential 
observers (Luenberger or Kalman observers) can be 
designed for the bioprocess if the reaction rate )(ξϕ  is 
completely known (Bastin and Dochain, 1990, Dochain, 
2008). However, the reaction rates are usually 
incompletely known; therefore it is not always possible to 
design and to use such observers.  

For the ethanol production bioprocess, by inspecting the 
observability matrix (Bastin and Dochain, 1990) and after 
some straightforward calculation, the conclusion is that an 
exponential observer (such as the extended Luenberger or 
Kalman observers) cannot be derived.  

Then, another possibility is to use an asymptotic observer 
(Bastin and Dochain, 1990, Dochain and Vanrolleghem, 
2001), which can be designed even without knowledge of 
kinetic reaction. The design is based on some useful 
changes of coordinates, which lead to a submodel of (14) 
which is independent of the kinetics. To obtain the change 
of coordinates, a partition of state vector ξ  in two parts is 
considered (Selişteanu et al., 2007).  

This partition denoted ),( ba ξξ induces partitions of the 
yield matrix K: (Ka, Kb), also of the rate vectors F and Q: 
(Fa ,Fb), (Qa, Qb) accordingly. We will chose a state 
partition such that the submatrix aK  is full rank and 

)()()dim( KrankKrank aa ==ξ . Then a linear change of 
coordinates can be defined as follows: 

 baGz ξ+ξ= ,    (16) 

with z an auxiliary state vector and G the solution of the 
matrix equation 0=+ ba KGK . In the new coordinates, 
the model (14) can be rewritten as 
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&
       (17) 

Then, it results that the dynamics of the auxiliary state 
variables is independent of the reaction kinetics. Now z  
can be rewritten as a linear combination of the vectors of 
measured states 1ζ  and unmeasured states 2ζ : 

 2211 ζ+ζ= GGz , (18) 

with G1 and G2 well defined matrices. If the matrix G2 is 
left invertible, the asymptotic observer equations for (14) 
derive from the structure of equations (17) and (18): 
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1122 ζ−=ζ
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+ GzG

QFQFGzDz bbaa
&

     (19) 

where TT GGGG 2
1

222 )( −+ = .  

The asymptotic observer is indeed independent of the 
kinetics. The asymptotic observer (19) has good 
convergence and stability performance (Bastin and 
Dochain, 1990, Dochain and Vanrolleghem, 2001).  

When the yield matrix has full rank, another useful 
asymptotic observer can be obtained. Thus, the state 
vector can be partitioned directly in measured states 1ζ  
and unmeasured states 2ζ , and correspondingly partitions 
( ),(),,(),, 212121 QQFFKK . Then a linear coordinate 
transformation which uses the entire vector of measured 
states can be written: 

 21 ζ+ζΓ=z . (20) 

The matrix Γ  can be obtained from the equation 
021 =+Γ KK , i.e. +−=Γ 12 KK , with 



 
 

     

 

TT KKKK 1
1

111 )( −+ = . By using the state transformation 
(20), the initial system (14) can be written as: 

 
.)(

,),(

2211

1111111

QFQFDzz
QFDzK

−+−Γ+−=
−+ζ−ζΓ−ζϕ=ζ

&

&
       (21) 

Then, the asymptotic observer is obtained as follows: 
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The asymptotic observer (22) is independent of the 
kinetics and has good convergence and stability 
performance (Bastin and Dochain, 1990, Dochain and 
Vanrolleghem, 2001).  

Remark 2. Because the yield matrix of the ethanol 
production bioprocess (10)-(13) is full rank (in fact, in 
this particular case we have a yield vector), the 
asymptotic observer (22) can be designed and 
implemented.  

In the following, taking into account that the substrate and 
ethanol concentrations are on-line measured and the 
biomass and dissolved oxygen concentrations should be 
estimated, we will use the next partitions of the state 
vector, yield vector and of the rate vectors: 
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where CTR  is the carbon dioxide transfer rate. 

Then, a linear coordinate transformation of the form (20) 
is used, with the matrix Γ  given by: 
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The auxiliary state variables obtained form (20), (24) are: 
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Then, the detailed equations of the asymptotic observer 
are obtained as: 
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   (26) 

The asymptotic observer (26) allows the on-line 
reconstruction of the unmeasured concentrations by using 
the available measurements, without the use of the 
reaction kinetics.  

4. DESIGN OF THE KINETICS ESTIMATION 
STRATEGY 

The most difficult task for the construction of the 
dynamical model (14) is the modelling of reaction 
kinetics. Generally speaking, the form of kinetics is 
complex, nonlinear and in many cases unknown. A 
common assumption is that a reaction can take place only 
if all reactants are presented in the bioreactor. Therefore, 
the reaction rates are necessarily to be zero whenever the 
concentration of one of the reactants is zero. Thus, the 
reaction rate can be expressed as ),()()( tH ξμξ=ξϕ , 
where ),( tξμ  is the specific growth rate. For the ethanol 
production bioprocess, XH =ξ=ξ 1)( . Then the model 
(14) becomes: 

 QFDtKH −+ξ−ξμξ=ξ ),()(& . (27) 

For the specific growth rate ),( tξμ  there exist different 
models, like Monod’s law or Haldane kinetic model 
(Dochain, 2008, Roman, 2011). However, in practice, the 
analytical models of the specific growth rate )(tμ  are 
difficult to obtain. Therefore, this uncertain rate needs to 
be on-line estimated. If we consider that the specific 
growth rate is an unknown time varying kinetic parameter 

)()( tt μ=ρ , then the model (27) can be written as: 

 QFDtKH −+ξ−ρξ=ξ )()(&  (28) 

The design of the on-line kinetics estimation strategy will 
be done considering that the model of bioprocess fulfils 
next hypotheses (Bastin and Dochain, 1990, Marino and 
Tomei, 1995): 

H1. All state variables are measurable in real-time 
(otherwise, the asymptotic state observer provided in 
Section III will be used); 

H2. The vector of feed rates, the dilution rate and the 
carbon dioxide transfer rate are measurable; 

H3. The matrix of yields coefficients K is known. 

The fundamental idea behind the design of an estimator 
based on a state observer technique is to use a state 
observer, not for the state estimation, but in order to 
provide the information needed for updating the estimates 
of the kinetic parameters. The nonlinear estimation 
algorithm for the ethanol production bioprocess (28) can 
be written as (Bastin and Dochain, 1990, Marino and 
Tomei, 1995, Selişteanu et al., 2010):  

 )()(ˆ)( estest QFDtKH ξ−ξΨ−−+ξ−ρξ=ξ&  (29) 

 )()]([ˆ est
TKH ξ−ξΘξ=ρ&  (30) 

In (29) and (30), ρ̂  is the on-line estimate of the unknown 
parameter (in fact, the unknown kinetics – the specific 
growth rate). The first equation of this algorithm is a state 
observer, used for updating the estimate ρ̂ , and not for 



 
 

     

 

state estimation. The update is generated by the 
estimation error )( este ξ−ξ= , where estξ  is the on-line 
estimation of the state vector (provided by the OBE; it is 
not the estimated state vector from Section 3). The error 

ρ−ρ ˆ  is directly reflected by the estimation error e. The 
matrix Ψ  is a gain matrix. In the second equation of the 
algorithm, the injection matrix Θ  is chosen such that the 
matrix ΘΨ+ΘΨT  is negative defined, with 

44)dim()dim( ×=Θ=Ψ . The design parameters of the 
estimator (29), (30) are the matrices Ψ  and Θ . The 
choice of these matrices must be done such that the 
algorithm to be stable and convergent. The properties of 
stability and convergence for this estimator have been 
discussed at length in (Bastin and Dochain, 1990, Marino 
and Tomei, 1995). A typical choice for the matrices Ψ  
and Θ  is of diagonal form: 

 }{
4,,1

i
i
diag ψ−=Ψ
= K

, }{
4,,1

j
j
diag θ=Θ
= K

,  +ℜ∈θψ ji ,  (31) 

After some straightforward calculation, by using (28) and 
(29)-(31), the detailed equations of the on-line estimator 
based on state observer for the unknown specific rates are 
obtained as follows: 
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 (32) 

Remark 3. The observer-based estimator (32) uses the 
measurements of substrate and ethanol concentrations, 
and the estimates of biomass and carbon dioxide 
concentrations X̂  and Ĉ  provided by the asymptotic 
observer (26), respectively. Thus, the nonlinear estimation 
strategy consists in a two-step procedure: first, the 
necessary state variables are estimated, and then these 
estimates are used for the implementation of the OBE for 
the unknown kinetics.  

5.  SIMULATION RESULTS AND DISCUSSIONS 

Several simulations were performed to validate the 
nonlinear bond graph model and to test the proposed 
estimation strategies. The ethanol production process has 
been simulated by numerical integration of equations 
(10)-(13) obtained via bond graph approach, by using the 
next bioprocess parameters (Ferreira, 1995): 
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In the following, three simulation scenarios were 
considered: 

(i) First, the asymptotic observer (26) was implemented 
for the bioprocess (10)-(13) with Monod form of the 
specific growth rate, in “ideal” conditions, supposing that 
no parametric disturbances occur and that free-noise on-
line measurements are available. Fig. 2 shows the 
evolution of the substrate and ethanol concentrations. Fig. 
3 depicts the estimated biomass concentration versus the 
“true” profile, while in Fig. 4 the carbon dioxide 
concentration and its estimate are presented. It can be 
observed the good behaviour of the asymptotic observer. 
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Fig. 2. Evolution of substrate and ethanol concentrations 
(case (i)). 
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Fig. 3. Time profiles of biomass concentration and its 
estimate – free-noise data (i). 
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Fig. 4. Evolution of carbon dioxide concentration vs. its 
estimate (i). 



 
 

     

 

(ii) The next simulation was conducted in more realistic 
conditions. Thus, the on-line measurements of substrate 
and ethanol concentrations are vitiated with an additive 
Gaussian noise of 5% from their nominal value. 
Furthermore, a parametric disturbance of the influent 
substrate is considered. This disturbance is of 20% of its 
nominal value and occurs for an interval of 4 hours.  
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Fig. 5. Profiles of noisy measurements of substrate and 
ethanol concentrations (case (ii)). 
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Fig. 6. Evolution of biomass concentration vs. its estimate 
– noisy data and parametric disturbance (ii). 
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Fig. 7. Carbon dioxide concentrations and its estimate – 
noisy data and parametric disturbance (ii). 

In Fig. 5, the noisy measurements of substrate and ethanol 
concentrations are presented. Figures 6 and 7 depict the 
profiles of estimates and “true” concentrations when 
noisy data are used and the parametric disturbance occurs.  
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Fig. 8. Specific growth rate versus its estimate provided 
by OBE – free noise data and parametric disturbance (iii). 
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Fig. 9. Specific growth rate versus its estimate provided 
by OBE – noisy data and parametric disturbance (iii). 

It can be observed that the asymptotic observer has a good 
behaviour, despite the action of these perturbations. The 
estimates are influenced by the noisy measurements, but 
the convergence and stability of the algorithm are kept. 

(iii) In this simulation scenario, the nonlinear OBE (32) 
was implemented in the same realistic conditions as in 
previous case. In order to study the performance of this 
observer, the results are compared with data generated 
from simulation of the process model (14). The specific 
growth rate for this simulation is of the Monod form 
given in the Remark 1 – this kinetic expression is 
introduced only for simulation; therefore this model is not 
used in the process of the observer design. The main goal 
of the OBE was to reconstitute the time evolution of the 
specific growth rate. The values of the tuning parameters 
were set to 4...1,10 ==ψ ii , and .4,...,1,2 ==θ ii  Fig. 8 
shows the time profiles of the specific growth rate and of 
its estimate (free noise measurements), and Fig. 9 depicts 
the same evolution but for noisy data of substrate and 



 
 

     

 

ethanol concentrations. It can be seen from this time 
evolution diagrams that the on-line nonlinear estimator 
provides good estimates for the unknown kinetics of the 
bioprocess.  

Also, it can be noticed that the measurement noise 
induces some noisy estimates of the kinetics, but the noise 
effect is limited. This effect can be reduced for lower 
values of tuning parameters. The problem for a large 
value of these parameters is that the observer becomes 
noise sensitive. The value of the tuning parameter is 
therefore a compromise between a good estimation and 
the noise rejection. 

6. CONCLUSION 

This work approached the pseudo bond graph modelling 
of an ethanol production process carried out inside a 
continuous bioreactor. The obtained model was used in 
order to design an asymptotic observer for the unavailable 
states of this bioprocess and an observer based estimator 
for the kinetics. The bond graph model was obtained in a 
natural way, starting with reaction scheme and using base 
elements of bond graph methodology and pseudo bonds. 
The dynamical nonlinear model obtained using the bond 
graph approach is equivalent with the dynamical state-
space model obtained using classical methods.  

In order to overcome problems such as the modelling 
uncertainties and the lack of on-line measurements for the 
ethanol production process, two nonlinear estimation 
strategies were designed for the estimation of state 
variables and imprecisely known kinetic rate inside the 
bioprocess.  

Because the classical exponential observes cannot be 
applied on this kind of bioprocesses, an asymptotic 
observer was designed for the biomass and carbon dioxide 
concentrations. The design was achieved without the use 
of the process kinetics. Also, an observer based estimator 
was implemented to provide the information needed for 
updating the estimates of the unknown specific growth 
rate. The advantages of the OBE are simplicity of design, 
good convergence and stability properties. On the other 
hand, the big number of tuning parameters can be 
considered as a drawback of this strategy. 

The numerical simulations showed that the proposed 
estimation algorithms can cope with parametric 
disturbances and noisy data. The obtained results are quite 
encouraging from simulation point of view. The proposed 
observers can be used for the design of advanced control 
strategies for the ethanol production bioprocess. 
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