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Abstract: Sometimes developers do not consider feasible the purchase of a pre-made rendering 
engine for creating a computer game so they prefer to create their own engine. Moreover, if the 
engine might be used for several games or applications that may run on different operating 
systems, it is desirable to be reusable and to have platform-independent functionality. This paper 
focuses on presenting the theoretical aspects involved by the construction of a portable and 
reusable rendering engine and on how they can be applied to design the architecture of the system. 
Although the author only intends to offer an overview of the subject, a prototype for a rendering 
engine is used for exemplification purposes. It has been implemented using the C++ programming 
language and the OpenGL API (Application Programming Interface), which confirm the claims of 
portability.
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1. INTRODUCTION

Rendering is used in the area of computer graphics to 
describe the process of drawing three dimensional models 
on a two dimensional surface represented by the screen. 

A rendering engine is a piece of software which takes as 
input meaningful rendering data associated to a group of 
objects and “outputs” the corresponding digital image on 
the monitor. The information that the engine needs 
consists in: objects geometry, camera position, textures, 
lighting and shading. 

The transformations that must be carried on the initial 
objects until they can appear as simple pixels on the 
screen involve a considerable amount of processing which 
is supported by both CPU and GPU. As a result, one of 
the most challenging aspects of creating a rendering 
engine is to use as little GPU and CPU resources 
(memory, number of operations) as possible without 
affecting the quality of the rendered scene. That is, the 
viewer must perceive it as a real-world scene.

There are two types of rendering: pre-rendering and real-
time rendering. Pre-rendering refers to a computationally 
intensive process that is typically used for movie creation 
or digital image processing (Marsh D. et al., 2006) while 
real-time rendering is often used for 3D video games 
which rely on the use of graphics cards with 3D hardware 
accelerators.

In what follows there will be presented the aspects 
involved by the creation of a real-time rendering engine. 
Thus, Section 2 discusses the graphics rendering pipeline
by presenting an outline of each of its three stages. 
Section 3 illustrates the architecture of the proposed 
engine which aims at a clear separation between the 
pipeline stages by using object oriented design patterns 

while Section 4 presents the conclusions of the current 
research.

2. THE GRAPHICS RENDERING PIPELINE

The graphics rendering pipeline is considered to be the 
core component of real-time graphics because its main 
function is to generate a two dimensional image given a 
virtual camera, three dimensional objects, light sources, 
shading equations, textures and more (Akenine-Moller T. 
et al., 2008). 

A pipeline consists of several stages (Hennessy et al., 
2012). For example, in a factory that produces integrated 
circuits, a single circuit cannot go on for encapsulation in 
a plastic casing until all the circuits before it , handled by 
the same robot, have been encased.

The three stages of the graphics pipeline are: the 
application stage, the geometry stage and the rasterizer 
stage.

2.1 The Application Stage

The application stage is entirely executed on the CPU and 
its result consists in a set of rendering primitives such as 
points, lines and triangles that represents the input for the 
next stage. 

Unlike other stages, the present one cannot be 
decomposed into substages because it relies completely 
on a software program. Nevertheless, the performance can 
be increased by running it on several processor cores.

The main problems handled at this stage are: collision 
detection, texture animation, animations via transforms, 
user input handling.

2.2 The Geometry Stage

The Geometry Stage is responsible for most of the per-
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polygon and per-vertex operations and is divided into the 
following functional stages: model and view transform, 
vertex shading, projection, clipping and screen mapping. 

2.3 The Rasterizer Stage

The Rasterizer Stage computes and sets the colours for 
the pixels that cover the objects in a scene. It takes as 
input the transformed and projected vertices with their 
associated shading data from the previous stage. Its 
functional substages are: triangle setup, triangle traversal, 
pixel shading and merging.

3. ARCHITECTURE

The prototype has a simple architecture based mostly on 
the object oriented design patterns of composition and 
inheritance and it implements the model-view-controller 
(MVC) concept (Gamma E., 1994). It was also influenced 
by the examples given in (Benstead L. et al., 2009) which 
helped integrate the OpenGL rendering pipeline.

It must be specified that this is only a draft of a future 
engine which aims to demonstrate that it is flexible and 
solid enough to serve as a framework for the development 
of 3D games.

Fig. 1 illustrates the classes that implement a part of the 
functionality of the engine that is, the creation and the 
rendering of simple objects that are also affected by light 
sources and that can perform simple actions such as: 
translation, scaling and rotation (this applies only to the 
instances of the DynamicObject class).

Fig. 1. UML class diagram for the main components of 
the engine

Next, the main characteristics of each class and how the 
rendering process is performed will be briefly described.

3.1 The Engine Class

The Engine Class is responsible with the creation and 
destruction of objects, their initialization, their update 
based on user input and their display on screen. 
Therefore, it plays the role of the controller in the MVC 
architecture.

Firstly, in the initialization phase, the OpenGL context is 
set up by enabling culling and depth tests (Foley J., 1995). 

Culling is a technique used in rendering for optimization 
purposes and it consists in eliminating the vertices that are 
not visible to the viewer from the group of vertices to be 
drawn on screen. There are several techniques used for 
culling. That implemented by OpenGL is called “back-
face culling”. By setting the GL_CULL_FACE state for 
the OpenGL context, the closed surfaces from the scene 
will not have all their polygons drawn but only those that 
face the camera. Thus, the number of rendered polygons 
decreases to half.

The depth test is associated to a depth buffer which 
contains a value for each pixel. This value represents the 
distance of each pixel from the eye and it is used to 
determine the order of drawing. The pixels with larger 
depth-buffer values are overwritten by pixels with smaller 
values.

After setting up the rendering context the scenes and their 
corresponding objects are created and initialized. There 
can also be created one or several cameras that allow the 
user switch between scenes or watch the same scene from 
different angles.

Handling user commands such as: key pressing, mouse 
clicks, mouse movement, wheel rotation and so on is also 
one of the most important aspects of an interactive
application. Thus, the Engine class contains methods 
(functions) that enable: switching between cameras and 
scenes (the class contains the indices of the current active 
camera and scene objects), camera rotation (around OY 
and OX) and camera translation.

If the framework is used for creating a 3D game, the class 
can be easily extended to keep one or more references to 
the player(s) and to implement the needed functions for 
controlling player physics.

3.2 The Camera Class

A camera in a virtual 3D world is actually the point and 
angle from which the user perceives the rest of the 
objects. As a result, the controller only needs to have 
access to the position of the camera, a 3D vector, and to 
its three angles of rotation: yaw (rotation around OY), 
pitch (rotation around OX) and roll (rotation around OZ).

Moving or rotating a camera object is one of the most 
interesting aspects in rendering because they actually 
involve the translation and rotation of all the objects in the 
scene in the opposite direction. For instance, if one wants 
to rotate the camera 30 degrees to the left, all the objects 
are rotated 30 degrees to the right. Also, if it should be 
moved 22 units forward, all the objects will move 22 units 
backward. This is necessary because rotation, translation 
and scaling are implemented via transformation matrices 
applied on the vertices of an object. Since the camera is 
not a physical object to be perceived but it affects the way 
the others are perceived, it only modifies those matrices 
used for rendering a scene.

61



Fig. 2. The angles for general rotation

Rotation around OZ is rarely used. As a result, the roll 
angle was neglected which implies that the position of the 
camera is determined based on the other two angles. For a 
camera that moves in the XOZ plane the following 
equations determine its position based on the varying yaw 
and pitch values:
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Where: 

tp�
tp� = current position of the camera

1�tp� = next position of the camera

f
�

= front vector

r� = right vector
dx = translation on OX
dz = translation on OZ

The dx, dz, yaw and pitch values are set according to user 
input.

3.3 The Scene Class

The Scene Class contains an array of light objects, an 
array of static objects, instances of the class Object, and 
another array of dynamic objects, instances of the 
DynamicObject class. The difference between these two
object types is that the latter can change position and 
orientation based on some speed variables whose values 
may change in time.

The class also keeps a reference to the view frustum 
which is no more than a collection of six planes that 
define the view volume. This variable is used in order to 
introduce another culling technique known as “frustum 
culling”. Thus, before going on to the geometry phase, all 

the objects in the scene are firstly checked to be partially 
or totally inside the view volume. If they are exclusively 
outside, then they will not appear on screen so it is not 
feasible to apply all the vertex and pixel transformations 
on them. 

This verification is performed using only CPU resources 
during the application stage and its success depends on
the frustum being updated at each frame in order to be 
consistent with the position of the camera.

The Scene class acts as an organizer for all the entities the 
user sees or are about to see and it conveys to them the 
messages sent by the engine. Thereafter, it represents the 
model of the MVC architecture along with its building 
components.

3.4 The Light Class

In computer graphics, light can be classified into four 
types: ambient (light reflected off many surfaces so that 
its source cannot be perceived), diffuse (light from a 
certain source that reflects equally in all directions), 
specular (comes from a specific source and reflects in 
only one direction) and emissive (which is emitted by an 
object).

When combined, all these types result in different light 
effects depending on how more powerful is one type from 
another. The translation to computer language means that 
the data encapsulated by the Light class consists in: the 
position of the light in the rendered world and the colours 
of its ambient, specular and diffuse components. The 
emissive component is more related to materials than to 
light sources so it has been neglected.

The lighting model of the engine is the one proposed in 
(Benstead L. et all , 2009) . Here GLSL shaders are used 
to compute the colour of each vertex based on its initial 
colour and the light sources that act on it. Then, the vertex 
colours are interpolated across the surfaces of the 
polygons to create realism.

A light is also supposed to illuminate objects less 
intensely if they are farther from the source so the Light 
class also contains variables (C-constant attenuation, L-
linear attenuation, Q-quadratic attenuation) that serve to 
creating this attenuation effect by multiplying the diffuse, 
specular, and source-specific ambient light colours to the 
attenuation factor. The latter is obtained from the relation:

2

1
dQdLC ����

  (2)

where d represents the distance of the vertex from the 
source of light.

All the data encapsulated by this class along with the 
information from the Object class related to the material 
properties and vertices positions and colours form the 
input for the vertex shaders used by OpenGL.

3.5 The Object and the DynamicObject Classes

As previously specified, the DynamicObject class only 
adds new members to the Object class for quantifying the 
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rotation or the translation speed of one of its instances. 
Therefore, only the properties and behaviour of the base 
class will be described into more detail.

The Object class is one of the most complex structures as 
illustrated in Fig. 3 because it encapsulates all the 
necessary data for rendering, i.e.: position of the entity, 
yaw, pitch and roll angles, radius of the bounding sphere 
used for culling, vertex, index, texture coordinates and 
normals buffers and arrays used by OpenGL, a reference 
to the current shader and another reference to the current 
skin of the object.

Fig. 3. UML class diagram for the Object class and its 
members

The class has been designed such as the shader and the 
texture (or skin) of an object can be changed at runtime 
based on the conditions of the game. The Texture class 
provides the access means to the .tga file that stores the 
image which will be mapped on an object based on its 
texture coordinates. The Material class contains the 
properties of the texture that describe how a light beam is 
reflected. These properties are: diffuse colour, ambient 
colour, specular colour, emissive colour and shininess.

Taking into consideration all the above information, the 
evolution of the rendering process for an object can be 
presented. 

Firstly, the shader is enabled. Different objects may use 
different shaders so it must be ensured that OpenGL uses 
to correct shader each time. The same operation is 
performed for textures but in this case the literature uses 
the term “bind” to specify to OpenGL what texture it 
should use otherwise it will use the last one that was 
bound.

Next, the OpenGL rendering pipeline receives all the 
necessary information for each vertex: position, colour, 
texture coordinates, normals and then the identifier of the 
index buffer which gives the order in which vertices 
should be traversed is specified.

Further on, the vertices undergo several transformations 
before rasterization such as: modelview transform, 
projection, clipping and viewport transforms whose 
output is a set of triangles that fits in the viewport and 
hence, that the user will see. These transformations are 
performed by the vertex shader, which can also compute 

an intermediary colour of a vertex based on its initial 
colour, material properties and light sources.

The last stage, the rasterization stage, is performed with 
the help of the pixel shader which computes the final 
colour of each pixel based on texture coordinates and on 
the previous colour value from the vertex shader.

3.6. The Font Class

Any graphics application uses labels for describing 
objects and phrases to create a user-friendly experience. 
Therefore, a rendering engine must offer the possibility of 
displaying text of different fonts, sizes and colours on the 
screen. 

In order to make this possible, the Font class has been 
created (Fig. 4) and it uses a texture of Targa format (.tga) 
to select the type of the font. Other significant attributes 
of the class are the size, a real number, the colour, a 
composite data type consisting of four real numbers for 
the red, green, blue and alpha components and a shader 
program which is the same for all fonts since there are no 
differences in their rendering process.

Fig. 4. UML class diagram for the Font class

Because the Engine class is the controller for this 
architecture and because, generally, texts appear on screen 
based on user input, it is the one that keeps a reference to 
the Font object in use. 

To create such an object, the programmer only needs to 
specify the type of the font which is equivalent to the 
name of the .tga file, the size, the colour and the width 
and height of the viewport. The last two parameters are 
necessary to set the orthographic projection during font 
rendering thus making the texts appear two-dimensional. 

To use a Font instance, the programmer must follow two 
rules: call the drawing routine for a certain text string and 
for its corresponding x and y coordinates after all the 
other objects in the scene have been rendered and reset 
the width and height used by the orthographic projection 
each time the window is resized. The first rule ensures 
that the text is actually visible because if it were rendered 
before everything else, then the objects in the scene would 
cover it. The second rule preserves the ratio between text 
size, objects size and window size as the window 
becomes larger or smaller.

The rendering process is similar to the one for objects the 
difference consisting in the fact that, for each letter in the 
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string, there must be computed eight texture coordinates 
which correspond to the four vertices of the quadrilateral 
that contains the letter.

4. CONCLUSIONS

In this paper, the author has tried to illustrate how a 
rendering engine works and which are the theoretical 
aspects involved. For exemplification, it has been used a 
prototype developed using the C++ programming 
language and the OpenGL API which ensures a higher 
degree of portability on different platforms (Windows, 
Linux, Mac OS and even on mobile using OpenGL ES). 

The aims for future work consist in extending the engine 
to support a solid animations system using 3D models 
exported from a modelling application and to provide 
implementations for several effects such as fog, smoke, 
water. Also incorporating optimization techniques to 
improve performance would be a great step forward, 
frustum culling being only the first one.
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