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Abstract: This paper introduces a skill based approach to human resource allocation. For this 
purpose a mathematical model is introduced modelling tasks and employees as vectors of skill. 
Then we present 5 strategies of allocating tasks to employees modeled as fitness functions. These 
functions are then compared in a simulated environment. The conclusion of the experiment is that 
allocating tasks to suboptimal employees can speed up the project delivery time at least fivefold. 
The novelty of this approach is mainly that we opted for a heuristic model of recommendation 
focused resource allocation that can be applied in continuous task flows.   
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1. INTRODUCTION 

The human resource management problem within an 
organization using Agile development methodology is a 
challenge that is normally left to the most experienced 
workers in the team. This is usually because the task 
requires the assignee to know both the team and technical 
details of the project. In this paper we will be referring to 
Agile software development and the teams of 
programmers using this methodology. 

When large teams and task backlogs Minor et al.(2007) 
are involved the task of human resource management 
critical and time consuming. Therefore, a time-saving 
solution is called for. The systems we found during our 
literature review are based on optimization algorithms. 
These approaches tend to be hard to put into practice 
because in real life the input data keeps changing: new 
tasks appear, employees leave, team leaders impose their 
decisions based on experience Yngve et al. (2016). Any 
of these situations require the mentioned approaches to re-
assign some of the tasks in order to reach the optimum 
and never take into account the current load of each team 
member. As presented in paper Minor et al (2007), task 
flow in Agile development has a feedback loop Fig.1. 
This is why we believe that creating a mathematical 
model based on fitness evaluations and ordered lists of 
recommendations for task assignment would be more 
directly implementable in practice. 

The rest of this paper is structured as follows: section 2 
presents related work from our survey of the literature on 
the subject; section 3 presents the mathematical model of 
the proposed approach and the performance measures; 
section 4 briefly presents how this approach could be 
implemented in practice; section 5 presents an 

experimental simulation with the proposed approach and 
discusses the results; section 6 discusses future work and 
draws conclusions. 

 
 
Fig. 1. A simplified business process model of task flow 

management in agile software development. 

2. RELATED WORK 

Bojan et al (2012) creates an agent-based simulation 
(ABS) Helbing et al (2012) for “Simulation Process 
Simulation Modeling (SPSM)” applied in the case of a 
real software development project. They show that the 
ABS can estimate project duration well. Also they 
propose an effort function which estimates the behavior of 
a developer for a given task. The authors do not attempt to 
present how this simulation can be used to improve task 
management in the real world. 

In paper Colucci et al (2004) the authors propose a skill 
based solution for task assignment in an organizational 
context. They use weighted bipartite graph in which arcs’ 
weight represents computed suitability of users on each 
task using a skill matching algorithm. The skill matching 
system has two components. The first component uses 
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classical information retrieval techniques with semantics 
to extract individual profiles from text files. The second 
component of the system sends extracted profiles to a 
matchmaker service. Third component is based on Khun 
algorithm Burkard et al (2012) will do the assignment 
based on the score obtained by the second component. 
The authors presume that the number of tasks equals the 
number of workers which is restrictive to say the least. 
Their algorithm requires a complete reallocation in case a 
single extra task would appear. 

In paper Roque et al. (2016) the authors propose a multi-
objective approach for minimizing cost and time of 
software development based on the Scrum(Stellman et al 
2014) method. They calculate both similarity of tasks and 
skill matching to obtain time and cost values for tasks. 
Then the computed time and cost are being minimized 
respecting that the amount of overtime worked by an 
employee which cannot be greater than allowed and an 
employee cannot be assigned to a task if he does not 
possess a required skill. 

Otero et al (2009) propose a resource allocation 
methodology called Best-Fitted Resource(BFR) that 
describe how learning of a required skill is affected by a 
previous knowledge on a related skill. The BFR 
methodology has four steps with each step resulting in a 
table. Their hypothesis is supported by a survey they 
conducted on real subjects. Their methodology setup 
requires skills to be marked as related to other skills if 
they can influence learning speed for those other skills. 

In paper Bădică et. al.  (2011) the authors present a way to 
match service providers and consumers using weighted 
utility functions.Service providers and consumers are 
represented as agents (Ilie et al 2010). This approach is 
similar to our own however it is applied between 
organisations and at each point the users need to fill in a 
form to fill in the service attributes. In order to keep 
consistent service attributes throughout this system, a 
term ontology is used. The authors present no 
evaluationand only minimal mathematical formalization. 
Therefore, it cannot be easily adapted to a task 
management scenario. 

It is evident that in the very specific scenario in which a 
project has just started with a completely fresh team the 
aforementioned approaches are valid and quite efficient at 
keeping cost down. However, besides the individual 
comments we had on the papers we also have a global 
criticism of the papers we reviewed. The approaches they 
propose are static:  they expect to know all the tasks from 
the beginning, no reassessment and the team leaders 
cannot impose their will on the system. None of the 
approaches take into account the fact that the employees 
might already have workload assigned, presuming that all 
employees are completely free at the time of assignment. 
This does not reflect the reality of team and project 
management in practical situations, especially in the 
domain of software development as shown in the real 
world analysis presented in McBride et al(2008). At this 

time, we do not propose a replacement approach for the 
usual optimization algorithms but rather we evaluate the 
effectiveness of a recommender system. This system 
could be used after the initial optimal assignment using an 
iterative algorithm. 

3. MATHEMTICAL MODEL 

In this section we will present how we model and propose 
to calculate instantaneous fitness functions based only on 
current task assignment for each employee and skill 
suitability. Towards the end of the section we will present 
performance measures calculated on the tasks assigned so 
far to the employees. 

We define k as the total number of skills required in a 
project. This number is not task dependent but a global 
variable. A project is assigned to a team Λof n employees 
P . The project also has an initial ordered list Θ of m tasks 
T defined from the start.  

An employee P is modelled as a vector of k skill levels Si. 

� = (��, ��, ��. . . �
)            (1)        

A task T is modelled as a vector of k skill levels Si 
expected from an employee in order to finalize this task 
efficiently and an estimation of time for task completion 
given a suitably adept employee. 

 
� = {(��, ��, ��. . . �
), ��}               (2) 

 

We can now visualize a task and employee with 10 skills 
as a radar chart (Kaczynski et al 2008).  For example, in 
Fig. 2 we show visually how the required skill levels and 
the employee skill levels overlap. 

A few simplifying assumptions are:  

• all employees start working simultaneously on their 
assigned tasks in sequence until they finish them all 

• it may be necessary to assign a task to an employee 
of inadequate skill level but in this case the 
estimated time of task completion will go up, as 
explained in the rest of this section. 

• tasks do not depend on other task results. For 

example, this could be a SCRUM1Sprint, a project 

phase, or maintenance tasks. 

• the speed of learning a new level in a skill is directly 
proportional to the employee’s current skill level. A 
higher level implies faster acquiring of new 
knowledge in that skill. 

• all employees have the exact same cost per hour 
therefore only hours will be taken into account. The 
number of hours will be sufficient in assessing 
performance. 

                                                 
1The SCRUM methodology of task 

managementhttps://www.scrum.org/ 
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Fig. 2. Representing tasks(blue) and employees(orange) 

as areas in radar charts. On the left: an employee that 
can immediately do a task. On the right: an employee 
that needs to learn more about 3 of his skills before 
being able to handle the task The overlapping area 
becomes purple. 

We define positive distance to minimum skill �(�, �)� 
that is strictly >0 if and only if the employee P i-th skill 
level is less that that required by task T. Quantitatively, 

the value of �(�, �)�is the actual modulo difference of 

skill. In Fig2 , �(�, �)would be the number of points of a 
skill that are required by a task but unsatisfied by an 
employee (blue areas). Mathematically this can be 
calculated for skill number i as follows: 

�(�, �)� = (�����(�����))����(�����)
� |��−��|         (3) 

where sgn is the mathematical function signum that 

returns 1 if the parameter is positive, −1 if the parameter 
is negative and 0 if the parameter is 0. The first fraction 
equals 1 if �� > ��and 0 otherwise 

Similarly to the work of Otero et al (2009) we estimate 
the amount of time for a employee P to finalize task T 

depending on the  �(�, �)� and the level of the employe. 
For each distance unit we add !/��to the initial estimated 
time e. 

�(�, �) = �� + ! ∑ %(&,')�
��


�   (4) 

where ! is the difficulty constant of each skill in 
particular. This constant determines how hard it is to lean 
a new skill level. 

We define the instantaneous fitness functions (: * × , →
ℜ, where *is the set of a employeesP and ,is the set of 
tasks T, using the following rationales: 

1. assign to the best prepared employee. The rationale 
being that this person will do the task in the least 
amount of time. In Fig 2 the orange surface of the 
employee should cover as much as possible of the 
radar and implicitly the task. 

2. assign to the most suitable. The rationale here is that 
the task should always be assigned to the employee 
that is closest match to the skills required by the 
task. Compared to strategy 1, this should free up 
some time for the best employees while avoiding to 
use ill prepared employees for difficult tasks. In Fig2 
the aim would be to find the employee and the task 
that over impose exactly. 

3. assign to the employee that can do the task the 
fastest. This strategy does not take into account how 
busy that employee might be. assign to the most 
suitable employee that is least occupied. 

4. assign to the most suitable employee who is is also 
least occupied.  

5. assign to the employee that can do the task the 
fastest but is also least occupied.  

In case number 1 to find the best employee for a task, we 

define the fitness function (� of an employee P for a given 
task T as follows: 

 

(�(�, �) = ∑ (����)��/0
∑ ∑ (�1���)��/�203120

                 (5) 

where �4� is the level of skill i of user j, these values are 

translated with +1 in order to avoid cancellation of 
necessary skills from the task in case l=0. 

The denominator is used to refer each employee to the 
whole team as a whole, i.e. the fraction is normalized. 

In case 2 to find the most suitable employee for a job, we 

define the fitness (� as follows: 

 
(�(�, �) = 5(�, �)  (6) 

where r is the correlation of T and P defined as the dot 
product of their skill vectors as follows: 

5(�, �) = ∑ ����/�20
6∑ ���/�20 6∑ ���/�20

                     (7) 

In case 3 in order to identify the fastest employee for a 

given task T, we define the fitness function (�as follows: 

 

(�(�, �) = �
7(&,')                        (8) 

The fitness function  (�generates the least amount of man-
hours by always assigning the fastest employee to each 

task. Implicitly (�generates the least amount of cost. 

In case 4 to identify the most suitable employee that is 
least occupied at the moment. In essence the fitness of the 
employee is directly proportional to r, and inversely 

proportional to estimated time of the task �(�, �)  when it 
is executed by P , and the sum of  we define the fitness 
function (8as follows: 

 

(8(�, �) = 9(&,')
7:

;<
7(&,')     (9) 

Where: 
r is the correlation between the skill vector of the task 

T and the skill vector of the  employee P as defined above 

�=is the sum of all time estimations for employee P on 

tasks allotted to him/her 

�̅ the mean of the �=for each employee within a 

margin of ? to a perfect correlation r=1 to task T 
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In case 5 to identify the fastest employee that is least 

occupied at the moment, we define the fitness function ( 
similarly to case 4, as follows: 

(@(�, �) = �
7:

;<
7(&,')            (10) 

We will now define performance measures and 
mathematical models that they are derived from. After 
applying these allocation strategies, the result is would be 
a set of m employee-task pairs with the fitness function up 
to that point in the project lifetime similar to the work of 
Colluci et al (2004). 

AB = {(�, �)|∀ � ∈ ,, ∃� ∈ *, ((�, �) = GHI�J�
 ((B(��  , �))} 

where x is the index of the fitness function, used to do the 
task allocation, as it results from the current paper 

In order to compare the four fitness functions, we 
calculate the following performance measures similarly to 
Minor et al (2007): 

• estimated project delivery time d. Defined as the 
estimated time it takes the busiest employee to finish 

his/her work. 

K(A) = GHI{�(�, �)| (�, �) ∈ A}  (11) 

• project total man-hours L(A). This number also 
reflects the project cost, as this is directly 
proportional to the financial resources required by 
the development team 

L(A) = ∑ �(�, �)(&,')∈M             (12) 

4. IMPLEMENTATION 

This approach is meant to be used as a recommender 
module added to an existing task management system like 
Redmine2. The module would receive as input a given 
task T and the complete list of employees. It would then 
calculate the fitness of each employee w.r.t. to the given 
task. This is done by taking into account the considered 
employee skills, the current unassigned task skill 
requirements and the currently assigned tasks to the 
employee. See figure 3 for the information flow (Ilie et. 
al. 2012) of the implementation. 

The proposed mathematical model does not require 
multiple iterations. The output would be a descending 
ordered list of employees in terms of fitness for each 
unassigned task. That is to say, the complexity of the 
recommender algorithm is O(n). Therefore, tasks can be a 
variable queue just like in real projects. 

For the purpose of finding the fitness function with the 
best performance we implemented an algorithm that 

receives as input the list of unassigned tasks ,and the list 
of employees *. 

                                                 
2The Redmine task management system website 

https://www.redmine.org/ 

 

Fig. 3. In this figure, the tasks, employees and team leader 
are part of the task management system, the 
Recommender module is the additional module 
needed to tell the team leader assign tasks  

For each unassigned task � ∈ , we then calculate the 

fitness function ((�, �) for every employee ∈ * . We can 
then evaluate the estimated time in which the employee 

with the maximum fitness function ( can finalize the 

current task and add it to the allocation A. At this point 

performance measures can be calculated over A. In short 
the algorithm used is as follows: 

1. program Simulation (,,*) 
2.  begin 

  for each � ∈ , : 
3. for each � ∈ , : 
4.      * find maximum ((�, �) and  

add it to A 
5.      * calculate e(P,T) 

6.      * sort A 
7. * send them to the view module 

8.  end. 

This algorithm calls a subroutine for recommendations 
view at line 7 to show how this code could be used in a 
real world implementation. However, this line has no 
functionality for the purpose of this paper so it is not used. 

For the following experiment we evaluate the scenario in 
which the team leader always accepts all the 
recommended task assignments. This was done in 
Python3, using the amazon Cloud 9 web based IDE 
equipped with an Ubuntu virtual machine4. For replication 
and evaluation, the code can be found on a public gitHub 
repository5.  

We generated a random list of m=2000 tasks ,, n=100 

employees *, with skill arrays of size k=100, skill levels 

�� , �� ∈ 0. .5 and initial estimated time for each task �� ∈
1. .8. These values represent a relatively complex phase of 

                                                 
3 Python programming language, release 3 
https://www.python.org/download/releases/3.0/ 
4 Cloud 9 web-based IDE from Amazon equipped with an 
Ubuntu virtual machine https://aws.amazon.com/cloud9/ 
5 The public code GitHub repository used for the 
implementation of the experimental simulation 
https://github.com/sorinilie/taskmanagement 
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a project where each task requires 100 separate skills to 
complete, and the complete team is composed of 100 
employees of various skill levels. As these skills are 
imaginary we simplified calculations by choosing the 

learning difficulty of all skills ! = 1. This does not 
influence the fitness function calculations since this 
constant would be applied to all employees. We will not 
mention the specifications of the machine we used 
because no execution time evaluation will be presented. 

After executing the simulation algorithm detailed in the 
previous section, we calculated the performance measures 
presented in the mathematical model section of this paper: 
Project delivery time d and total man-hours t. 
Additionally we found it interesting to present the 
percentage amount of human resources allotted to the 
project for each fitness function presented. The numeric 
results are presented in Table 1 and visualized in Fig 4 
and Fig 5. 

As expected, allocation A�, “assign the task to the 
employee that can finish it fastest”, has the smallest total 

man-hour cost L(A�) = 80441 therefore we can use it as 
a baseline for the cost discussion. Any other allocation is 
more expensive, however, there are other allocations that 
present a better project delivery time. The good 

performance of A�is due to the fact that (�minimises the 
amount of hours spent learning new skills. 

The results show that A8 “assigning tasks to the suitable 

employee that is less occupied” and A@ “assigning tasks to 
the employee that can finish the task fastest that is also 
less occupied” are the most efficient in obtaining fast 
project delivery times. This is due to the fact that their 
fitness function spread out the workload more evenly 
between the employees. 

We calculated that allocation A8 will lead to finishing the 
project in K(A8) = 1284 calendar hours. Therefore, it 

will bring the project to an end 93.7%  faster than A�but it 

costs 16.4% more than A�. Similarly, allocation A@ 

finalized the project in K(A@) = 1278 callender hours. In 
consequence, it will bring the project to an end 93.8%  

faster than A�but it costs 16.6% more than A�. We 
postulate that this reduced project duration is due to the 

bias for less occupied employees of (�and (8. In support 
of this affirmation we present (� and (�that do not use this 
bias and result in considerably longer project duration. 

Table 1.  Experimental result for the 4 fitness functions 
proposed for comparison.  

measure (�eq(5
) 

(�eq(6
) 

(�eq(8
) 

(8eq(9
) 

(@eq(1
0) 

project 

delivery time 

deq(11) 

 
68712 

 
5911 

 
20536 

 
1284 

 
1278 

total man-

hour teq(12) 

86875 87701 80441 96228 96492 

resource 

allocation 

20% 97% 47% 100% 100% 
 

The “best skilled employee per task” allocation A� is bad 

for project duration K(A�) = 68712  and cost (A�) =
86875 . It will bring the project to an end 334%  slower  
than A�and it costs 7% more than A�. This strategy only 
uses the 20% of the human resources, i.e. the best skilled 
20% of employees will be busy while the others are 
completely free. This particular allocation is completely 
impractical in a real software development organization. 

 

Fig. 4. The calendar duration of the project with the 5 
strategies: 1) best worker ; 2) most suitable; 3) fastest; 
4) most suitable that is least occupied; 5) fastest that is 
least occupied.  

 

Fig. 5. The comparison of the total man-hour resulting 

from allocation A for the 5 fitness functions. 

5. CONCLUSIONS AND FUTURE WORK 

This paper introduced a skill-based approach to human 
resource allocation. The conclusion of the experiment is 
that allocating tasks to suboptimal employees can speed 
up the project delivery time at least fivefold. The novelty 
of this approach is mainly that we opted for a heuristic 
model of recommendation focused resource allocation 
that can be applied in continuous task flows. This topic 
requires a lot of future work: natural language processing 
and sentiment analysis on task comments, assessing task 
progress health, adjustment of skill vectors automatically 
when employees learn new skills, implementing the 
system on Redmine or Taiga6. 

 

                                                 
6 A task management system that allows skills to be 
specified for users and tasks https://taiga.io/ 
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