DIPLOMA PROJECTS Powered by Continental

No. Crt	Topic Titlte	Topic Description	Competence Area
1	Smart Intersection Manager		computer science, artificial intelligence
2	Smart City Traffic Manager		computer science, artificial intelligence
3	Anomaly detection in movies, radar flow, image flow, camera	Detect whether the sensor is blocked, is partially blocked, is getting blocked using artificial intelligence, deep learning. To do this, we will try to detect whether there are impossible changes in a movie from one frame to another, or from one sequence to another - like a new cut, sudden black screen, and so forth. Deep	artificial intelligence, deep learning

SIBIU

4	System to evaluate if an autonomous driving function might cause secondary accidents	In general autonomous driving functions choose on main target vehicle and act accordingly - collision avoidance according to one main target. In case of city traffic there are a lot of interactions between traffic participants, so a wrong activation of one autonomous driving function might cause secondary collision or blocking an intersection and so forth. The idea is to create a system which evaluates and calculates the best time to apply one autonomous driving function, like emergency braking, collision avoidance, turn assist, or choosing between those depending on primary and secondary collisions. Proof of concept needed for the patented idea, details of algorithm can be asked via mail.	computer science, artificial intelligence
5	Collision Avoindance in intersection using blocked grid, fluid dynamics	In case of intersection it is really hard to assess whether there will be a collision or not, because there are a lot of traffic participants and the movement of one influences the others a lot. We will try to map the kinematics and future possibilities of every traffic participants into a grid and treat the whole scenario with fluid dynamics theory or other similar methods. The main idea is to treat the traffic scenario as a whole, not as individual interactions between different traffic participants. Treating individually is impossible, because of the number of interactions and possibilities. Proof of concept needed for the patented idea, details can be asked via mail.	computer science, artificial intelligence
6	Game theory and autonomous driving	Make atuonomous driving like a game where you are a winner if you reach the destination safe and in a quick, natural way. Using a combination of game theory algorithms and deep learning methods create a general autonomous driving function. Proof of concept needed for the patented idea and the algorithm, details can be asked via mail.	artificial intelligence, deep learning

7	Traffic participant intention monitoring	Create a system which evaluates and creates a set of probable future trajectories and intentions for each traffic participants using the measured data. Predictions can be made using a sequence of measured data, the traffic scenario, the current environment. Possibilities has to be evaluated, probabilities added according to measurement from the next cycles. Proof of concept needed for the patented idea and the algorithm, details can be asked via mail.	artificial intelligence, deep learning
8	Deep learning method to optimize hyper- parameters for one driving function (there are more than 10 driving functions, each one can be a separate diploma project)	Using the set of created attributes for each traffic participants and for the eqo vehicle, we can create a neural network to create better links between those attributes and activation of a driving functions. The neural network can create new, better indirect connections between several attributes and the driving functions. The neural network can be further developed to create a state machine with defined transitions according to the attributes of the traffic participants. Proof of concept needed for the patented idea and the detailed algorithm, details can be asked via mail.	artificial intelligence, deep learning
9	LabView driver for 2.8' TFT display with touch screen	create a FPGA library for MI0283QT-9A color display with ILI9341 display controller	LabView and FPGA programming
10	LabView driver for 7' TFT display with touch screen	create a FPGA library for HT050AWV40T color display with SSD1963 grafic controller and STMPE811 touchpanel controller	LabView and FPGA programming
11	Communication protocol converter - hw development	design and build a PCB which is able to transmit/receive data over various the serial protocols, design hardware interfaces for these serial buses (CAN, LIN, RS232, I2C)	schematic and PCB development
12	Communication protocol converter - fw development	create the firmware for one board which is able to transmit/receive data over various the serial protocols (CAN, LIN, RS232, I2C)	embedded C development
13	CNC machine control software and GUI	LabView real-time and FPGA design - read G-code files, axis control, GUI development	LabView and FPGA programming
14	Advanced technique for BLDC/PMSM sensorless motor control (1)	An microcontroller or an DSP should be used for implementation. BEMF trapezoidal control with and without phase advance. PID RPM compensation is required.	Embedded C development and motor control

15	Advanced technique for BLDC/PMSM sensored motor control (1)	An microcontroller or an DSP should be used for implementation. HALL/Sensored trapezoidal control with and without phase advance. PID RPM compensation is required.	Embedded C development and motor control
16	Advanced technique for BLDC/PMSM sensorless motor control (2)	An microcontroller or an DSP should be used for implementation. BEMF sinus comutation control with and without phase advance. PID RPM compensation is required.	Embedded C development and motor control
17	Advanced technique for BLDC/PMSM sensored motor control (2)	An microcontroller or an DSP should be used for implementation. HALL/Sensored sinus comutation control with and without phase advance. PID RPM compensation is required.	Embedded C development and motor control
18	Advanced technique for BLDC/PMSM sensorless motor control (3)	An microcontroller or an DSP should be used for implementation. Sensorless FOC control with and without phase advance.	Embedded C development and motor control
19	Advanced technique for BLDC/PMSM sensored motor control (3)	An microcontroller or an DSP should be used for implementation. Sensored FOC control with and without phase advance.	Embedded C development and motor control
20	Some possibilities to generate ISO Pulses using Bidirectional Switch with SiCMOS transistors	Positive and negative pulses generated using two bidirectional switches, controlled with Microchip dsC.	Power Electronics and Embedded C
21	Digital control of an DC-DC Buck convertor with PID regulator (1)	An microcontroller or an DSP should be used for implementation of digital control. Output electrical power should be at least 50W. A voltage control will be used.	Embedded C development and Power Electronics
22	Digital control of an DC-DC Boost convertor with PID regulator (1)	An microcontroller or an DSP should be used for implementation of digital control. Output electrical power should be at least 50W. A voltage control will be used.	Embedded C development and Power Electronics
23	Digital control of an DC-DC Buck-Boost convertor with PID regulator (1)	An microcontroller or an DSP should be used for implementation of digital control. Output electrical power should be at least 50W. A voltage control will be used.	Embedded C development and Power Electronics
24	Digital control of an DC-DC Buck convertor with PID regulator (2)	An microcontroller or an DSP should be used for implementation of digital control. Output electrical power should be at least 50W. A peak current control will be used.	Embedded C development and Power Electronics
25	Digital control of an DC-DC Boost convertor with PID regulator (2)	An microcontroller or an DSP should be used for implementation of digital control. Output electrical power should be at least 50W. A peak current control will be used.	Embedded C development and Power Electronics

26	Digital control of an DC-DC Buck-Boost	An microcontroller or an DSP should be used for implementation of digital control. Output electrical power should be at least 50W. A peak current control will be used.	Embedded C development and Power Electronics
27		*NOTE: for Norbert Veresz, Intern TR BSW, DB team. Not confirmed yet. (to be confirmed if feasibile until end of CW 43)	Embedded C, C#
28		The equivalent DC resistance of a transistor running in linear region is controlled by an uC.	Electronic Devices and Circuits, Power Electronics, Embedded C
29		In Pspice simulation: a current source and voltage source in series	Electronic Devices and Circuits, Power Electronics, Embedded C
30	Bipolar Swithced Mode DC Power Supply	Bidirectional switches and two feedback circuits is used for voltage / current source realisation.	Electronic Devices and Circuits, Power Electronics, Embedded C
31	I thermal Micro-Chamber for Electronic Devices	Microchip dsC and Peltier elements is used for controle the temperature inside the box where is introduced an electronic devices.	Electronic Devices and Circuits, Embedded C