

Support for public-key infrastructures in DNS

Marius Marian, Diana Berbecaru

Dipartimento di Automatica e Informatica
Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract: Traditionally, publicly available repositories
of certificates offer the usual response to the problem
of public key distribution. After issuing a public-key
certificate a certification authority (CA) – in the frame
of a particular public-key infrastructure (PKI) – will
store and publish that certificate in a repository so that,
at a later moment, end-users can search, find and
retrieve public-key certificates. A known and still
persisting drawback of this approach is that these
repositories are not interconnected between each other
on an Internet scale, therefore the search and retrieving
of certificates on a wider scale turns out to be very
difficult. In this scenario, end-users are supposed to
know the Internet location of the repository before
actually starting the procedure of search and retrieval.
Currently, there are no means to perform automatic
discovery of authoritative repositories for a particular
certificate using as a search-key some information
identifying an Internet entity. In this paper, we try to
describe a different approach for solving the key
distribution problem. This solution takes into account
an already existing Internet-wide infrastructure: the
domain name system (DNS).

Key words: key distribution, public-key infrastructure,
domain name system.

INTRODUCTION

In the field of Internet security, the major theoretical
and technological breakthrough of the last century was
the discovery of public-key cryptography (by M. Diffie
and W. Hellman in 1976). With it, it became possible
to have secure communication between Internet parties
that had no a priori knowledge of each other. Public-
key cryptography is based on the following principle:
each party has a pair of keys (cryptographically related
one with another) where one of the keys is made
public, and the other is kept private. Typically, the
public key is made available to everyone by means of a
public-key certificate [1] (a.k.a. certificate, or digital
certificate). This approach has the advantage of
granting trust into the real owner of the public key and
is accomplished by a trusted third party (TTP). The
entity in charge of issuing certificates (i.e., the TTP) is
called a certificate authority (CA). A CA will perform
a set of verifications (including one on the identity of
the owner of the public key) before digitally signing
the certificate. Hence, a public -key certificate
represents a signed (i.e. trustworthy) assertion
regarding the owner’s identity and the owner’s public
key.

Why is Key Distribution an Issue in Public-Key
Infrastructures?

The question titling this section may seem trivial at a
quick look, however it hides a true problem when
dealing with large-scale deployment of public-key
technology within present-day Internet transactions.
PKT-based security services require knowledge of
public keys, and generally, a user of these services
needs to obtain and validate certificates containing the
required public keys. Currently, there are two types of
globally available information retrieval systems that
have utility: those designed for use by machines, and
those designed for humans. The World-Wide Web is
an example of an information retrieval system for
humans, while DNS [2, 3] is an example of such a
machine-oriented system.

Usually, one aspect that is often taken for
granted, and therefore ignored in practice, is that before
relying on public-key technology (PKT) for secure
communication, Internet parties must in someway get
possession of the public key (or the corresponding
certificate) belonging to the other party. Let’s assume
for example the case of secure e-mail: in order to send
confidential messages to his/her recipient(s), a user
must obtain in some way the public key(s) of the
recipients so that he/she can encrypt the message.
Actually, the mechanism mentioned earlier relies on
the user generating a symmetric key that will be used
to encrypt the whole message, and afterwards the user
will encrypt this symmetric key with the public key of
each recipient. At receipt, each recipient will use
his/her own private key to retrieve the encrypted
symmetric key, and only then the recipient will be able,
using this symmetric key, to decrypt the e-mail
message. The case we wanted to emphasize is known
as the problem of public key distribution (or certificate
distribution).

Today, the majority of CAs allows users to
retrieve public -key certificates and certificate
revocation lists (CRL) by storing them in publicly
available repositories. A comprehensive definition of a
PKI repository is summarized in: “A repository is a
system or a collection of distributed systems that stores
certificates and certificate revocation lists (CRL), and
serves as a means of distributing these certificates and
CRLs to end entities”.

From the point of view of certificate-using
entities the problem of key/certificate distribution is
divided into two major parts: search and retrieval. The
first part of the problem is a bit more delicate since it
involves the process of finding the location of a
certificate when there are available either full or only

partial information that specifies the subject of the
certificate. For examp le, in the case of secure e-mail
the user may possess only the e-mail addresses of the
recipients, and therefore the user must identify and
obtain the certificates of the recipients by means of just
that information. The second part of the problem
addresses the actual mechanism by which certificates
can be fetched by end entities. Taking into account all
these facts, we can see how critical are the certificate
distribution mechanisms for PKT-based services and
PKI operations. PKI repositories are clearly the
solution, and a lot of efforts were made for
standardizing and implementing solutions that could
satisfy basic requirements such as the ability of users to
search and retrieve certificates for a target identity.
Unfortunately, the problem of repositories is that they
are local, closely tied to the PKI community they
belong and consequently the problem of “where to look
for the certificate of a given entity” still persists. In the
following paragraphs, we will describe the typical
mechanisms currently available for end-entities when
facing the problem of retrieving certificates and CRLs.

A directory is a specialized, distributed
database that stores typed and ordered information.
However, a directory is not a general-purpose
relational database since it doesn’t support complicated
transactions or rollback schemes that are usual for
traditional DBMS. For directories, only few operations
are optimized such as reading, browsing and searching,
and this is because the main goal of directories is to
provide quick responses to high volumes of lookup and
search operations. Additionally, the data typically
stored in directories is changing infrequently while the
directory updates are simple all or nothing changes. In
order to support reliability and availability of service,
directories have the ability to replicate information
with short synchronization times between replicas.
Taking into consideration all the advantages of a
directory service, certification authorities have
traditionally implemented their repositories using the
directory model. The repository will be available to
end entities by means of one or more directory servers.

Initially, X.509 certificates were thought to be
stored in an X.500 directory. Due to technical, but
mainly political difficulties encountered in trying to
implement the full X.500 directory, there is currently
no standard certificate distribution/storage mechanism.
However, PKI repositories have been traditionally
based on the lightweight directory access protocol
(LDAP) [4, 5]. LDAP is much simpler than its
precursor, the directory access protocol (DAP). LDAP
is nothing more than an access protocol – compatible
with the X.500 directory model – having one important
advantage: it is independent of the particular
technology employed by the underlying directory
database. An LDAP directory stores information into a
hierarchical manner, although the underlying database
engine converts it back to flat format (that is,
information is stored in rows of tables).

The management of an LDAP server requires
a lot of effort for setting up schemas and storing
certificates into the directory. Additionally, the ability
of LDAP servers to store certificates depends entirely

on the certificate content, since LDAP servers can only
store certificates that comply with the server's scheme
and expected attribute structure. Unless the certificates
were specially designed to work with the server's
scheme, the server would not be able to store them.
Therefore, schemas need to be modified due to the
inappropriate matching between the existing object
classes and the ones required by some certificates. And
this leads to other problems, such as the rebuilding of
the entire directory information tree. Due to these facts,
it is questionable if LDAP servers will ever be able to
act as a general-purpose certificate store. In the same
context, there should not be ignored the interoperability
problems raised from having different schemes for
different LDAP servers. Finally, it is worth mentioning
that up to now the LDAP directories have failed to
aggregate into a globally available infrastructure.

FTP (file transfer protocol) offers a viable
solution for publishing and distribution of certificates
and CRLs, being an attractive alternative to the
traditional directory access protocols. A CA may
choose to use an FTP server for publishing certificates
and CRLs so that end entities can access this data by
means of anonymous FTP. Below, there are depicted
two uniform resource identifiers (URI) pinpointing
user certificates and also one URI corresponding to a
CRL, all of them based on an FTP distribution scheme:
 ftp://ftp.europki.org/italian_ca/certs/marius_marian.cer
 ftp://ftp.europki.org/italian_ca/certs/ID235.cer
 ftp://ftp.europki.org/italian_ca/crl/crl.crl
FTP is one good choice for Internet users since it is
widely deployed and also because anonymous FTP is
accommodated by many firewalls. Therefore end
entities in Internet can easily retrieve certificate and
CRLs via FTP once they obtained the particular URI.
The disadvantage of using an FTP-based repository
service resides in the fact that certificates cannot be
located when there is available only some partial
information identifying the certificate-owner (e.g. the
e-mail address).

HTTP represents another frequent solution for
a PKI repository implementation. The idea is similar to
the one previously described for FTP. A web server
can represent for a CA an excellent means for
publishing PKI-specific data. End entities can retrieve
this data by means of HTTP-aware clients (e.g. Internet
browsers). Examples of URI names pointing to
certificates and CRLs are given below:
 http://www.europki.org/italian_ca/certs/marius_marian.cer
 http://www.europki.org/italian_ca/certs/ID235.cer
 http://www.europki.org/italian_ca/crl/crl.crl
The HTTP-based repository service is practical when
Internet users are already having the URI identifying
the certificate. Its strong point consists in the fact that
nowadays HTTP is largely deployed in Internet, and is
well accommodated by firewalls. However, HTTP is
not of great help in cases where users are trying to find
a certificate having only some partial information
regarding the owner of the certificate, for example an
e-mail address.

The digital signature of a public-key
certificate asserts its data content authenticity and
integrity; hence, a public-key certificate doesn’t need

particular security protections. For this reason, a
certificate can be distributed by means of a variety of
other mechanisms including here transfers through
non-trusted systems, or using non-secure protocols. For
example, the S/MIME protocol enables an end entity to
send its public-key certificate along with a S/MIME
message.

Of course, the perspective of end entities
waiting for S/MIME messages from all their peers in
order to obtain their certificates just before being able
to use public-key technology makes of little use such
approaches.

Another mechanism for distributing
certificates is to have certificates hard-coded into
relying party's application (this usually happens in
common used browsers such as MS Internet Explorer,
Mozilla and Netscape Navigator). This approach has
substantial drawbacks, adding and removing
certificates is difficult and also requires the user
intervention. In practice, frequently users don't have a
complete understanding of all issues involved in
certificate management. Moreover, the solution is
incomplete since only a limited number of certificates
can actually be hard-coded (the certificates of CAs)
while the user – on its own – must somehow retrieve
all other certificates. It becomes clear that the
scalability of public -key technology is highly
dependent on easily accessible PKI repositories.

THE DOMAIN NAME SYSTEM AND ITS
SUPPORT FOR KEY DISTRIBUTION

The Domain Name System (DNS) [2, 3] represents the
set of protocols and services on a TCP/IP network that
allows users of the network to use hierarchical user-
friendly names when looking for other hosts instead of
having to remember and use their IP addresses. This
system is used almost by any other application and
protocol that is involved in network communication
(e.g., web browsing, ftp, telnet or other TCP/IP utilities
on Internet). In the ISO/OSI hierarchy, DNS is placed
at application level, even though its usage is
transparent to the users that simply refer to names
instead of IP addresses, and it can use either TCP or
UDP as transport protocols. In practice, DNS can be
seen as a distributed database of names. These names
establish a logical tree structure called the domain
name space. A name server may cache information
about any part of the domain tree, but in general it has
complete information about a specific part of the
domain name space. This means the name server has
authority for that subdomain of the name space –
therefore it will be called authoritative. Resolvers are
programs that extract the information from name
servers in response to client requests. Usually,
resolvers are mainly relying on UDP (since the DNS
queries and responses are well-suited for this protocol),
but TCP might be used whenever truncation of the
returned data occurs.

A resource record (RR) represents the means
by which the domain name system stores its data. Each

RR may take one of the following two alternative
forms:
 domain_name [TTL] [CLASS] TYPE RDATA
 domain_name [CLASS] [TTL] TYPE RDATA
The domain_name component of each RR specifies the
owner of the data stored in the RDATA field. RRs are
divided into classes, and each class denotes a type of
network. Additionally, within each class of RRs, a type
identifies the RR. Each type corresponds to a variety of
data that DNS is able to store.

Storing Public-Key Certificates in DNS

RFC 2538 [6] proposes a resource record useful for
storing public-key certificates within the DNS
denominated CERT. The format of the CERT RR (that
is the RDATA field above) is depicted below:
 Type KeyTag Algorithm Certificate/CRL
The certificate type field is used for identifying the
format of the certificate stored in the RR. Currently,
DNS can store certificates conforming to X.509
standard, SPKI proposal, and PGP standard.
Consequently, the type field can be represented either
as an unsigned integer that corresponds to the
particular certificate format, or as a corresponding
mnemonic (e.g. PKIX, SPKI, PGP). The key tag field
is identical with the one defined within the DNSSEC
specification. In the DNSSEC perspective, the key tag
is used to differentiate between multiple public keys
when having to verify a DNSSEC signature. Each
signature (SIG) RR has a key tag field that is
unequivocally identifying the public key that was used
for creating that signature. To reduce the computational
effort involved in the verification process, the key tag
field is used to efficiently select the appropriate public
key. The same applies for the case of CERT RR. The
algorithm for calculating the two-octet key tag is
implemented by the following C-language function:

int compute_keytag (unsigned char *key, unsigned int
keysize)

{
 long int ac;
 unsigned int i;

 for (ac = 0, i = 0; i < keysize; ++i)
 ac += (i&1) ? key[i] : key[i]<<8;
 ac += (ac>>16) & 0xFFFF;

 return ac & 0xFFFF;
}

The algorithm field is similar with the one pertaining
to KEY and SIG resource records described in RFC
2535 [7]. A zero algorithm field represents the only
exception; such a case indicates that the algorithm was
not considered in the initial DNSSEC specification.
The algorithm field is represented either as an unsigned
integer or as a mnemonic in conformity with. The
certificate is included in the RDATA component of the
CERT RR in a base64-encoded form. The certificate
content may be divided into white-space separated

substrings. An example of a CERT RR containing an
X.509v3 public-key certificate is given below (for
space-saving reasons, it was given only a small part of
the actual base64 encoding of the certificate):

marius.marian.polito.it 86400 IN CERT PKIX
30132 RSAMD5 (MIIFhzCCBG+gAwIBAgICA O4
wDQYJKoZIhvcNAQEFBQAwZTELMAkGA1UEBh
MCSVQx HjAcBgNVBAoTFVBvbGl0ZWNuaWNvI
GRpIFRvcmlubzE2MDQGA1UEAxMtUG9saXRlY25
pY28gZG…)

Practical Experiments

The purpose of these experiments was the
implementation of a PKI repository starting from the
following observations. Even though commonly used
applications such as mail user agents (MUA) are PKI-
enabled, in everyday practice e-mail messages are still
exchanged without any means of protection. The main
cause of this happening is the lack of an easy
accessible, globally available repository. A secondary
cause is the unawareness of people using the
technology. While the second cause is difficult to
eliminate, we believe that for the technology-related
cause an easy solution can be provided. Additionally,
IPsec is today the most common way in which security
can be achieved at network layer. In practice, IPsec has
been widely deployed to implement virtual private
networks (VPN). In order to have a secure exchange of
packets at IP layer, both the sending and the receiving
devices must share a cryptographic key. The key
management protocols involved in the IPsec's key-
exchange scheme can take advantage of a DNS-based
repository.

The practical experiments dedicated to testing
the DNS support for PKI services were performed in
the frame of EuroPKI [8] public -key infrastructure.
The EuroPKI Certification Authority is a non-profit
organization established to create and develop a pan-
European public-key infrastructure. Politecnico di
Torino hosts the Root CA of the EuroPKI project. The
experiments aimed to implement a DNS-based PKI
repository for the certification authority of Politecnico
di Torino (POLITO). For our experiments we have
used Bind v9.1.2 [9] a popular, open-source DNS
implementation. The master nameserver was installed
on a Sun Ultra 5 workstation (Solaris 2.7) with a
UltraSPARC-II CPU at 333 MHz and 256 MB RAM
memory, while the secondary nameserver was installed
on a Intel PIII 1 GHz Linux box with 256 MB of
RAM. The zone files of these nameservers included all
valid public-key certificates issued by POLITO CA.
The experiment involved the most common types of
certificates issued by POLITO CA:
o personal certificates are used to bind a public key

to the identity of an individual, and
o server certificates are used to bind a public key to

the identity of a network node or of a network
service.

These X.509v3 certificates issued by POLITO CA are
not minimal certificates, since they include a

significant set of certificate extensions. The average
size of the DER-encoded POLITO CA certificates is
around 1340 bytes for server certificates, and
approximately 1400 bytes for personal certificates. It is
worth mentioning that all these certificates contain
1024-bit public keys.

Previously, the certificates of POLITO CA
were distributed to relying parties by means of an
LDAP-based repository and also by means of a HTTP-
based repository. The personal certificates issued by
POLITO CA are mainly used for securing services
such as e-mail, and also for client authentication within
PKI-aware applications, such as SSL-telnet and SSL-
ftp.

Proposed Naming Scheme

The CERT resource record allows mapping of public-
key certificates to domain names. Obviously, this
mapping creates the opportunity of transforming the
DNS into a globally available PKI repository. The
primary requirement of DNS resides in its need for
having some domain name associated with each entry.
The standard requires that CERT RRs should be stored
under a domain name related to their subject, that is the
identity of the entity intended to control the private key
corresponding to the certified public key. Translating
the subject's distinguished name into a domain name is
frequently a delicate and rather difficult problem. It is
impossible to have a unique and definitive solution to
this problem. Therefore, the standard provides a set of
alternative solutions that could meet the above
requirement. These solutions should be used in practice
respecting the following order:
o If a domain name is used for the identification of

the certificate's subject, then that domain name
should be used.

o If a domain name is not included but an IP address
is included, then the translation of that IP address
into the appropriate inverse domain name should
be used.

o If neither of the above is used but a URI
containing a domain name is present, then that
domain name should be used.

o If none of the above is present but a character
string name specifying the subject's e-mail address
is included, then the standard translation of the
subject's e-mail address into a domain name
should be used.

o If none of the above applies, then the distinguished
name (DN) should be mapped into a domain name
as specified in RFC 2247 [10].

Taking for example the personal certificates issued by
POLITO CA, it can be observed that each certificate
contains a SubjectAltName extension. This extension
specifies that an alternative name for the certified
subject is his/her e-mail address. Starting with 2002,
the internal regulation of Politecnico di Torino imposes
for each individual affiliated to this institution mailing
addresses in the form of:
first_name.last_name@polito.it . The RFC 822 [11]
format used for mailing addresses can be easily

translated into a domain name just like in the following
example:

marius.marian@polito.it ? marius.marian.polito.it
Similarly, POLITO server certificates have the
SubjectAltName extension indicating the dNSName of
the host on which the server runs. The naming scheme
used for storing certificates in our DNS-based
repository will obey the following two rules:
o In case of a personal certificate, it will be used the

domain name corresponding to the standard
translation of the individual's e-mail address
(stored in the SubjectAltName extension).

o In case of a server certificate, it will be used the
domain name stored in the SubjectAltName
extension.

Administration of Certificates

The default policy is that all certificate of POLITO CA
can be published in the DNS-based repository.
However, certificate subscribers are questioned (at
application time) if there are any privacy requirements
impeding storage of their certificates in DNS. For
publishing certificates into the DNS-based repository
we have developed a set of software tools. These tools
are used by the CA operator for the administration of
the repository. The operations that must be performed
for each newly issued certificate are:
1. Search for the Subject field within the certificate

content. Extract the value stored under this field
corresponding to either an e-mail address or a
domain name. In case of multiple choices, it will
be applied – respecting the specific priorities – the
CERT naming rules mentioned earlier.

2. If the above process failed, search for the
SubjectAltName extension within the certificate
content. Extract the value stored under this
extension corresponding to either an e-mail
address or a domain name. In case of multiple
choices, it will be applied – respecting the specific
priorities – the rules mentioned earlier.

3. Once a domain name is determined, it will be
created a CERT resource record for each newly
issued certificate. For each CERT resource record,
it will be determined the appropriate values of the
necessary fields: TTL, class, and type.
Additionally, it will be computed the RDATA
fields: certificate type (usually PKIX certificates),
the key tag and the algorithm type. Finally, the
base64-encoding will be used for storing the actual
certificate.

4. Once a new RR is created the CA operator can
upload this RR into the DNS database. After the
DNS database was updated with the latest
information, the nameserver will be signaled to
reload its data.

Scalability and Performance

The transition to a new model for PKI-repository
requires a careful analysis and one of the things to be
considered before moving towards an innovative model

is its scalability. Since most PKI repositories are built
today on LDAP technology we found reasonable to
compare the LDAP-based repositories with the DNS-
based approach. The tests were performed using open-
source implementations of LDAP and DNS. For LDAP
the immediate choice was the OpenLDAP [12]
implementation, whilst for DNS we have chosen the
well-known implementation of BIND provided by the
Internet Software Consortium.

One PKI problem is that mapping from a
X.500 name to a different name space often becomes
extremely difficult. Since Internet communication
today is naturally expressed in terms of DNS names, it
is reasonable to have DNS-based repositories for
public-key certificates if we want to provide security
features based on PKI technology to Internet
transactions.

The first disadvantage of LDAP compared
with DNS is that, currently, it fails the test of
deployment on a global scale. Moreover, locating a
certificate can turn to be extremely difficult if a relying
party does not know which is the authoritative LDAP
server that can answer a potential search request.
Usually, a relying party searching for another entity's
certificate is holding only a partial set of information
identifying the target entity: an e-mail address or
simply a host name. Discovering authorities in DNS
was a design goal and Internet works today also thanks
to this feature. Resolvers are able to parse the entire
DNS tree (using referrals from intermediate
nameservers) in order to find an authoritative name
server they can interrogate.

Nowadays, LDAP server implementations
allow administrators to configure referrals to other
LDAP servers in cases where requests arrive for data
outside the authoritative domain. However, given that
so far it wasn't actually implemented a global LDAP
infrastructure (as is the case with DNS) – and, more
importantly, there are no perspectives in the near future
for a global standard meant to link LDAP servers to
each other – the usage of referrals in LDAP is of little
use. In other words, an end entity - having only a small
piece of information about its peer – would have
problems in determining the authoritative LDAP server
that could provide the peer's certificate. Consequently,
discovery of authorities is difficult in LDAP, and it
can't be done in a dynamic and simple way (as it is
currently done in DNS). Moreover, partitioning the
directory information tree is possible in LDAP, even
though it is a lot harder than in DNS, and this operation
always requires the presence of a master server. But,
partitioning the tree usually results in a non-uniform
distribution of data, and every query still has to go
through the root of the tree. In this way, searching the
tree will always be limited by the performance of any
one single directory server. All these facts put in doubt
the current scalability potential of LDAP.

An LDAP query will always require a TCP
connection, thus the TCP protocol overhead will
always be present with its inherent latency. On the
other hand, DNS is capable to operate on both TCP and
UDP. The advantage of using DNS over UDP consists
in the fact that a client will always make one query and

will receive one response (be it a referral or an
authoritative answer). It was observed that LDAP
requires one round trip to set up the connection
followed by two round trips for sending a client bind
request and receiving the server bind response. Then,
the actual lookup query requires another round trip.
When answering a search query, the LDAP protocol
assembles the response data in so-called search entry
packets. There can be zero or more such packets
depending on how many LDAP entries have matched
the lookup filter. However the status of this lookup
transaction will be always sent in a search response
packet. Immediately after the search response was
delivered, the client usually closes the TCP connection
by means of an LDAP unbind request. The fact is that
one TCP connection needs a minimum of 5 packets
(usually 6) for setup and tear down, excluding data
packets, thus requiring at least 3 round trips on top of
the one for the original UDP query! During the
practical tests, it was observed that a DNS-based query
is taking fewer round trips than an LDAP-based query
even when the DNS-based query was to be retried via
TCP. However a DNS resolver can be easily instructed
to start a connection directly via TCP avoiding thus the
sometimes-useless round trip involved in the initial
UDP transaction.

Traditionally, the size of DNS messages on
UDP was limited to a maximum size of 512 bytes. The
512 bytes limit was imposed in the first place to reduce
the probability of fragmentation of DNS responses.
Lately, efforts have been made to extend the
performance of DNS nameservers in order to support
DNS messages greater than 512 bytes. The DNS
extension mechanism EDNS0 [13] allows resolvers to
inform nameservers that they are able to process DNS
responses larger than 512 bytes. Thus, if the expected
answer is between 512 octets and the maximum size
that the client can accept (that is the maximum transfer
unit of the client’s stack), the additional overhead of a
TCP connection can be avoided. Using this extension
mechanism in a series of tests, we have noticed that
DNS is able to use without problems UDP for DNS
messages up to 4096 bytes on an Ethernet network
(where the maximum transmission unit is 1500 bytes).
Of course, different OS stacks impose different upper
limits for the UDP datagrams those stacks can handle
and reassemble.

Both TCP and UDP have their specific
overhead (20 bytes for TCP and 8 bytes for UDP).
Taking into account these values, the maximum
payload for an Ethernet packet results to be of 1460
bytes when using TCP/IP, and 1472 bytes via UDP/IP.
If we correlate the maximum payload with the sizes of
the certificates described earlier (POLITO CA
certificates range between 1340 – 1400 bytes), we can
easily see the advantage of using DNS for retrieval of
certificates. Moreover, since the majority of OS stacks
today are able to reassemble UDP packets up to 4 KB
then there is not a problem for applications to use DNS
for locating and fetching public-key certificates
whenever the DNS extension mechanism (EDNS0) is
present.

Another interesting aspect regards the support
for the two protocols in the operating systems available
today. On one hand, for DNS we have universal OS
support, whilst for LDAP few OS are supporting it
now, consequently patches or/and updates are
necessary on client platforms.

The DNS-based approach presented in this
paper has two important issues that require careful
attention for implementation: first, the transition from
X.500 distinguished names to DNS names, is not
always as straightforward as that encountered in our
experiments. Second, firewalls are known to interfere
with the UDP protocol (even though it is assumed that
the DNS traffic will be allowed) consequently, it may
happen that, sometimes, the DNS queries and
responses will be blocked.

CONCLUSIONS

One serious obstacle to the availability of public-key
cryptography everywhere and every time is the lack of
a worldwide, easy-accessible repository for digital
certificates. DNS provides a unique opportunity for
PKIs: to take advantage of a system that is already
deployed on a global scale, and which conforms
exactly with the way in which people in Internet
communicate the name of the host to whom they want
to connect, or the name of the person to whom they
want to send a message. The latest security extensions
of the DNS protocol support a new, encouraging
perspective for public -key technology: extended DNS
may act as a global PKI repository. This potential can
be used by a variety of PKI-aware protocols (such as
S/MIME, and IPsec).

REFERENCES

[1] R. Housley, W. Polk, W. Ford, D. Solo, Internet X.509
Public Key Infrastructure Certificate and CRL Profile. IETF,
RFC 3280, April 2002.
[2] Paul Mockapetris, Domain Name System - Concepts and
Facilities, RFC 1034, November 1987.
[3] Paul Mockapetris, Domain Name System -
Implementation and Specification, RFC 1035, November
1987.
[4] M. Wahl, T. Howes, S. Kille, Lightweight Directory
Access Protocol, RFC 1777, March 1995.
[5] M. Wahl, T. Howes, S. Kille, Lightweight Directory
Access Protocol (v3), RFC 2251, December 1997.
[6] Donald Eastlake, Olafur Gudmundsson, Storing
Certificates in the Domain Name System , RFC 2538, March
1999.
[7] Donald Eastlake, Domain Name System Security
Extensions, RFC 2535, March 1999.
[8] EuroPKI project – http://www.europki.org
[9] BIND - Open-source implementation of DNS, Internet
Software Consortium, available at http://www.isc.org/bind/.
[10] S. Kille, M. Wahl, A. Grimstad, R. Huber, S. Sataluri,
Using Domains in LDAP/X.500 Distinguished Names, RFC
2247, January 1998.
[11] D. Crocker, Standard for the format of ARPA Internet
Text Messages, RFC 822, August 1982.
[12] OpenLDAP - Open-source implementation of LDAP,
OpenLDAP group, available at http://www.openldap.org/.
[13] P. Vixie, Extension Mechanisms for DNS (EDNS0), RFC
2671, August 1999.

