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The recent solution by Kučera (2017) will be presented to a 

long-standing open problem of linear control theory, the 

diagonal decoupling by static-state feedback. The earliest 

known investigation of system decoupling dates back to 

Voznesenskii (1938), a rigorous state space formulation of 

the problem appeared in Morgan (1964), and a solution for 

square and invertible systems followed (Falb and Wolovich, 

1967). All past solutions were obtained under restrictive 

assumptions on system and feedback such as same number of 

inputs and outputs, regular state feedback, or specific internal 

couplings.  



 

 

     

 

Decoupling is a problem of compensating a multi-input 

multi-output system in such a way that each system output is 

independently controlled by one system input and not 

influenced by the other inputs. The system is assumed to be 

linear, time-invariant, and giving rise to a proper rational 

transfer matrix. Decoupling can always be achieved using 

dynamic compensation, which increases the order of the 

system. The static-state feedback, however, does not increase 

the order and therefore may involve only the internal 

dynamics. 

The mechanisms for the comprehension of the solvability of 

this very complex problem are presented. The formulation 

avoids restrictive hypotheses concerning system and 

decoupling feedback. The existence of a solution is shown to 

depend on the existence of three lists of nonnegative integers 

conditioned by and only by structural system invariants with 

respect to the group of permissible transformations, which 

include state feedback, input and state transformations and 

output permutations. The invariants are conveniently 

captured by a matrix of a unique structure, called the 

interactor. The solvability conditions are necessary and 

sufficient. The necessity proof is based on existence results 

whereas the sufficiency proof is based on constructive 

arguments and provides an algorithm to determine a 

(nonregular) decoupling control law. 

When a system is decoupled, it is broken down into single-

input single-output noninteracting subsystems. That is why 

decoupling is also called noninteractive control. Such a 

structure is desirable in a number of applications, since 

considerable computational as well as conceptual simplicity 

can be accrued for subsequent system design. Indeed, the 

interactive loops are the source of major complications, 

whereas the decoupled structure is amenable to simple single-

loop control system design techniques. 

When diagonal decoupling cannot be achieved, it may be of 

interest to investigate the possibility of block decoupling. A 

block-decoupled system is broken down into smaller multi-

input multi-output noninteracting subsystems so that partial 

noninteraction is achieved. The problem was formulated by 

Wonham and Morse (1970) and solved for several special 

cases. A complete solution, however, was not obtained until 

recently (Kučera, 2018). 

The mechanisms for the solution of the block decoupling 

problem are shown to be the same as for the diagonal 

decoupling problem. The only new concept needed is that of 

the block interactor. The interactor of the system to be block 

decoupled is modified so that its principal submatrices, each 

corresponding to the output coordinates of one block, are 

made diagonal by nullifying their off-diagonal entries. This 

reflects the fact that the interaction within each block need 

not be eliminated while the cross-block interactions need be. 

The solution of block decoupling is then given by that of 

diagonal decoupling with the interactor replaced by the block 

interactor. If the blocks are not specified from the outset, the 

method to be presented permits a search to determine the 

sizes of the smallest blocks attainable. 
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